Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
José A Sánchez-Villanueva, Lia N'Guyen, Mathilde Poplineau, Estelle Duprez, Élisabeth Remy, Denis Thieffry
{"title":"Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.","authors":"José A Sánchez-Villanueva, Lia N'Guyen, Mathilde Poplineau, Estelle Duprez, Élisabeth Remy, Denis Thieffry","doi":"10.1093/bib/bbaf002","DOIUrl":null,"url":null,"abstract":"<p><p>Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse. Recent studies pointed to various underlying molecular components, but their precise contributions remain to be deciphered. We developed a logical network model integrating signalling, transcriptional, and epigenetic regulatory mechanisms, which captures key features of the APL cell responses to RA depending on the genetic background. The explicit inclusion of the histone methyltransferase EZH2 allowed the assessment of its role in the resistance mechanism, distinguishing between its canonical and non-canonical activities. The model dynamics was thoroughly analysed using tools integrated in the public software suite maintained by the CoLoMoTo consortium (https://colomoto.github.io/). The model serves as a solid basis to assess the roles of novel regulatory mechanisms, as well as to explore novel therapeutical approaches in silico.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse. Recent studies pointed to various underlying molecular components, but their precise contributions remain to be deciphered. We developed a logical network model integrating signalling, transcriptional, and epigenetic regulatory mechanisms, which captures key features of the APL cell responses to RA depending on the genetic background. The explicit inclusion of the histone methyltransferase EZH2 allowed the assessment of its role in the resistance mechanism, distinguishing between its canonical and non-canonical activities. The model dynamics was thoroughly analysed using tools integrated in the public software suite maintained by the CoLoMoTo consortium (https://colomoto.github.io/). The model serves as a solid basis to assess the roles of novel regulatory mechanisms, as well as to explore novel therapeutical approaches in silico.

急性早幼粒细胞白血病对维甲酸治疗耐药的预测模型。
急性早幼粒细胞白血病(APL)是由涉及视黄酸受体α (RARA)基因的染色体异常易位引起的,主要与早幼粒细胞白血病(PML)或早幼粒细胞白血病锌指(PLZF)基因有关。由此产生的癌蛋白阻断造血分化程序,促进异常增殖早幼粒细胞。视黄酸(RA)治疗在大多数PML::RARA患者中是成功的,而PLZF::RARA患者经常产生耐药性和复发。最近的研究指出了各种潜在的分子成分,但它们的确切作用仍有待破译。我们开发了一个整合信号、转录和表观遗传调控机制的逻辑网络模型,该模型捕捉了APL细胞对RA的遗传背景反应的关键特征。组蛋白甲基转移酶EZH2的明确包含允许评估其在耐药机制中的作用,区分其典型和非典型活性。使用集成在CoLoMoTo财团(https://colomoto.github.io/)维护的公共软件套件中的工具对模型动力学进行了彻底的分析。该模型为评估新的调节机制的作用以及探索新的计算机治疗方法提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信