Claire Rennie, Nabila Morshed, Matthew Faria, Lyndsey Collins-Praino, Andrew Care
{"title":"Nanoparticle Association with Brain Cells Is Augmented by Protein Coronas Formed in Cerebrospinal Fluid.","authors":"Claire Rennie, Nabila Morshed, Matthew Faria, Lyndsey Collins-Praino, Andrew Care","doi":"10.1021/acs.molpharmaceut.4c01179","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored. Indeed, less than 1% of protein corona studies have investigated protein coronas formed in cerebrospinal fluid (CSF), the fluid surrounding the brain. Herein, we utilize two clinically relevant polymeric nanoparticles (PLGA and PLGA-PEG) to evaluate the formation of serum and CSF protein coronas. LC-MS analysis revealed distinct protein compositions, with selective enrichment/depletion profiles. Enhanced association of CSF precoated particles with brain cells demonstrates the importance of selecting physiologically relevant biological fluids to more accurately study protein corona formation and subsequent nanoparticle-cell interactions, paving the way for improved nanoparticle engineering for in vivo applications.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored. Indeed, less than 1% of protein corona studies have investigated protein coronas formed in cerebrospinal fluid (CSF), the fluid surrounding the brain. Herein, we utilize two clinically relevant polymeric nanoparticles (PLGA and PLGA-PEG) to evaluate the formation of serum and CSF protein coronas. LC-MS analysis revealed distinct protein compositions, with selective enrichment/depletion profiles. Enhanced association of CSF precoated particles with brain cells demonstrates the importance of selecting physiologically relevant biological fluids to more accurately study protein corona formation and subsequent nanoparticle-cell interactions, paving the way for improved nanoparticle engineering for in vivo applications.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.