{"title":"New limits of the Lie product formula type in Banach algebras","authors":"Dumitru Popa","doi":"10.1007/s13324-024-01002-0","DOIUrl":null,"url":null,"abstract":"<div><p>We find new limits of the Lie product formula type in Banach algebras with unit. Some sample results: Let <i>X</i>, <i>Y</i>, <i>Z</i> be Banach algebras with unit, <span>\\( \\left( x_{n},y_{n}\\right) _{n\\in \\mathbb {N}}\\subset X\\times Y\\)</span> convergent sequences with <span>\\(\\lim \\nolimits _{n\\rightarrow \\infty }x_{n}=x\\)</span>, <span>\\( \\lim \\nolimits _{n\\rightarrow \\infty }y_{n}=y\\)</span> and <span>\\(T:X\\times Y\\rightarrow Z\\)</span> a continuous bilinear operator with <span>\\(T\\left( \\textbf{1},\\textbf{1}\\right) = \\textbf{1}\\)</span>. Then for all sequences of natural numbers <span>\\(\\left( a_{n}\\right) _{n\\in \\mathbb {N}}\\)</span> with <span>\\(\\lim \\nolimits _{n\\rightarrow \\infty }a_{n}=\\infty \\)</span> we have </p><div><div><span>$$\\begin{aligned} \\lim \\limits _{n\\rightarrow \\infty }\\left[ T\\left( \\prod \\limits _{k=1}^{n}e^{ \\frac{x_{k}}{a_{n}\\left( k+n\\right) \\left( k+2n\\right) }},\\prod \\limits _{k=1}^{n}e^{\\frac{y_{k}}{a_{n}\\left( k+2n\\right) \\left( k+3n\\right) } }\\right) \\right] ^{a_{n}}=e^{\\left( \\ln \\frac{4}{3}\\right) T\\left( x,\\textbf{ 1}\\right) +\\left( \\ln 2\\right) T\\left( \\textbf{1},y\\right) }; \\end{aligned}$$</span></div></div><div><div><span>$$\\begin{aligned} \\lim \\limits _{n\\rightarrow \\infty }\\left[ T\\left( \\prod \\limits _{k=1}^{n}\\cos \\frac{x_{k}}{a_{n}\\sqrt{n\\left( n+k\\right) }},\\prod \\limits _{k=1}^{n}\\cos \\frac{ky_{k}}{na_{n}\\sqrt{n^{2}+k^{2}}}\\right) \\right] ^{na_{n}^{2}} \\end{aligned}$$</span></div></div><div><div><span>$$\\begin{aligned} =e^{-\\frac{\\left( \\ln 2\\right) T\\left( x^{2},\\textbf{1}\\right) +\\left( 1- \\frac{\\pi }{4}\\right) T\\left( \\textbf{1},y^{2}\\right) }{2}}. \\end{aligned}$$</span></div></div></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-01002-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-01002-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We find new limits of the Lie product formula type in Banach algebras with unit. Some sample results: Let X, Y, Z be Banach algebras with unit, \( \left( x_{n},y_{n}\right) _{n\in \mathbb {N}}\subset X\times Y\) convergent sequences with \(\lim \nolimits _{n\rightarrow \infty }x_{n}=x\), \( \lim \nolimits _{n\rightarrow \infty }y_{n}=y\) and \(T:X\times Y\rightarrow Z\) a continuous bilinear operator with \(T\left( \textbf{1},\textbf{1}\right) = \textbf{1}\). Then for all sequences of natural numbers \(\left( a_{n}\right) _{n\in \mathbb {N}}\) with \(\lim \nolimits _{n\rightarrow \infty }a_{n}=\infty \) we have
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.