A comprehensive study of the influence of non-covalent interactions on electron density redistribution during the reaction between acetic acid and methylamine

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Olivier Aroule, Emilie-Laure Zins
{"title":"A comprehensive study of the influence of non-covalent interactions on electron density redistribution during the reaction between acetic acid and methylamine","authors":"Olivier Aroule,&nbsp;Emilie-Laure Zins","doi":"10.1007/s00894-024-06249-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.</p><h3>Methods</h3><p>In this work, we will follow the how a reaction mechanism involving the formation of two chemical bonds and the breaking of two other chemical bonds is affected by non-covalent interaction. To this end, the reaction force will be used to define the region of the reagents, the region of the transition state, and the region of the products. We will analyze the redistributions of electron density and electron pairs in each of the regions of the reaction mechanisms, using QTAIM and ELF, topological analyses, respectively, for the reaction between methylamine and acetic acid, in the presence of 0 to 4 water molecules. DFT calculations were carried out at the LC-ωPBE/6–311 + + G(d,p) + GD3BJ level along the intrinsic reaction coordinate of the one-step reaction leading to the formation of methylacetamide.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06249-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.

Methods

In this work, we will follow the how a reaction mechanism involving the formation of two chemical bonds and the breaking of two other chemical bonds is affected by non-covalent interaction. To this end, the reaction force will be used to define the region of the reagents, the region of the transition state, and the region of the products. We will analyze the redistributions of electron density and electron pairs in each of the regions of the reaction mechanisms, using QTAIM and ELF, topological analyses, respectively, for the reaction between methylamine and acetic acid, in the presence of 0 to 4 water molecules. DFT calculations were carried out at the LC-ωPBE/6–311 + + G(d,p) + GD3BJ level along the intrinsic reaction coordinate of the one-step reaction leading to the formation of methylacetamide.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信