{"title":"Few-Shot Object Detection in Remote Sensing: Mitigating Label Inconsistencies and Navigating Category Variations","authors":"Tiancheng Si;Shenyu Kong","doi":"10.1109/ACCESS.2025.3527881","DOIUrl":null,"url":null,"abstract":"Over recent years, the increasing expansion of remote sensing image (RSI) datasets has made annotation tasks more challenging and labor-intensive, drawing considerable attention toward few-shot object detection (FSOD). Nevertheless, current mainstream FSOD models are primarily designed for natural images and encounter two substantial challenges when applied to RSIs. 1) Inconsistent label assignment for novel instances between pre-training and fine-tuning confuses detectors, leading to diminished generalization performance. 2) Complex scenes within RSIs result in significant category variations, comprising high inter-class similarity and large intra-class variance, which impairs classification accuracy. Against the aforementioned challenges, we propose a novel FSOD approach in RSIs, termed EC-FSOD. Specifically, our approach introduces two key modules: Ensemble Class-free RPN (ECF-RPN) and Contrastive Prototype ETF Classifier (CPEC). The preceding module, ECF-RPN, generates proposals by integrating multiple dissimilar yet cooperative Class-free RPNs that perceive the shape and location of target objects, mitigating the confusion caused by label inconsistencies. Furthermore, the subsequent CPEC module combines two submodules, namely Contrastive Prototype Learning Network (CPLN) and Simplex ETF Classifier (SEC), to obtain a set of representative class prototypes and robust discriminative feature representations, which are employed to overcome the category variations and enhance the generalization performance of novel instances. Extensive experiments have revealed that our approach achieves top-2 results on the DIOR dataset and optimal performance on the NWPU VHR-10.v2 dataset.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"8169-8186"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10835074/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Over recent years, the increasing expansion of remote sensing image (RSI) datasets has made annotation tasks more challenging and labor-intensive, drawing considerable attention toward few-shot object detection (FSOD). Nevertheless, current mainstream FSOD models are primarily designed for natural images and encounter two substantial challenges when applied to RSIs. 1) Inconsistent label assignment for novel instances between pre-training and fine-tuning confuses detectors, leading to diminished generalization performance. 2) Complex scenes within RSIs result in significant category variations, comprising high inter-class similarity and large intra-class variance, which impairs classification accuracy. Against the aforementioned challenges, we propose a novel FSOD approach in RSIs, termed EC-FSOD. Specifically, our approach introduces two key modules: Ensemble Class-free RPN (ECF-RPN) and Contrastive Prototype ETF Classifier (CPEC). The preceding module, ECF-RPN, generates proposals by integrating multiple dissimilar yet cooperative Class-free RPNs that perceive the shape and location of target objects, mitigating the confusion caused by label inconsistencies. Furthermore, the subsequent CPEC module combines two submodules, namely Contrastive Prototype Learning Network (CPLN) and Simplex ETF Classifier (SEC), to obtain a set of representative class prototypes and robust discriminative feature representations, which are employed to overcome the category variations and enhance the generalization performance of novel instances. Extensive experiments have revealed that our approach achieves top-2 results on the DIOR dataset and optimal performance on the NWPU VHR-10.v2 dataset.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.