{"title":"Electrical Conductivity of Mantle Transition Zone and Water Content Revealed by the Magnetic Data of China Seismo-Electromagnetic Satellite","authors":"Mingquan Lai;Xiuyan Ren;Changchun Yin;Yunhe Liu;Xinpeng Ma;Yinglin Wang;Shufan Zhao","doi":"10.1109/JSTARS.2024.3523671","DOIUrl":null,"url":null,"abstract":"The mantle transition zone (MTZ) plays a key role in the deep global material cycle, while the water content in MTZ is debated from saturated to dry. Since the electrical conductivity is highly sensitive to water, its accurate estimation will greatly help reveal the water content. The high quality and plenty of data are crucial for global-scale conductivity recovery. In this article, we use the magnetic vector data of China seismo-electromagnetic satellite (CSES) to estimate the global mantle electrical structure, accompanying with the Swarm satellite and observatories. In particular, we correct the latitude effect of CSES Level 2 data. The radial conductivity model and uncertainty information of the Earth are obtained by using Bayesian inversion. It is found that large changes in the electrical results of MTZ occur when using the CSES magnetic field data. The conductivity is higher than that inverted from Swarm data, but lower than that from the observatory data. Finally, we, respectively, invert the resistivity structure of the MTZ with two years and nearly nine years of database of CSES, Swarm, and observatories, and analyze the laboratory conductivity model. The results indicate that the water content of the MTZ is less than 0.01 weight%.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"3173-3184"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817569","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10817569/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The mantle transition zone (MTZ) plays a key role in the deep global material cycle, while the water content in MTZ is debated from saturated to dry. Since the electrical conductivity is highly sensitive to water, its accurate estimation will greatly help reveal the water content. The high quality and plenty of data are crucial for global-scale conductivity recovery. In this article, we use the magnetic vector data of China seismo-electromagnetic satellite (CSES) to estimate the global mantle electrical structure, accompanying with the Swarm satellite and observatories. In particular, we correct the latitude effect of CSES Level 2 data. The radial conductivity model and uncertainty information of the Earth are obtained by using Bayesian inversion. It is found that large changes in the electrical results of MTZ occur when using the CSES magnetic field data. The conductivity is higher than that inverted from Swarm data, but lower than that from the observatory data. Finally, we, respectively, invert the resistivity structure of the MTZ with two years and nearly nine years of database of CSES, Swarm, and observatories, and analyze the laboratory conductivity model. The results indicate that the water content of the MTZ is less than 0.01 weight%.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.