Xunzhu Jiang, Xianhong Wu, Mingyue Lv, Xiaoli Pan, Hua Wang, Chenyang Li, Meixin Chen, Wei Chen, Bo Zhang, Guangtao Yu, Zhong-Shuai Wu, Botao Qiao, Bin Liu, Fritz E. Kühn, Tao Zhang
{"title":"\"Suspended\" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose","authors":"Xunzhu Jiang, Xianhong Wu, Mingyue Lv, Xiaoli Pan, Hua Wang, Chenyang Li, Meixin Chen, Wei Chen, Bo Zhang, Guangtao Yu, Zhong-Shuai Wu, Botao Qiao, Bin Liu, Fritz E. Kühn, Tao Zhang","doi":"10.1021/jacs.4c13368","DOIUrl":null,"url":null,"abstract":"Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re<sub>1</sub>-phen/NiO). Multiple experimental characterizations together with theoretical calculations unravel the idea that the isolated Re atoms are suspended on the NiO surface, connected by phenanthroline ligands standing perpendicular to the surface. This unique structure provides the Re<sub>1</sub>-phen/NiO SAC with a strong capability to activate glucose molecules, enabling fully exposed Re=O double bonds in an open-ended reaction environment to simultaneously react with hydroxyl and aldehyde groups at both ends of the glucose molecule, rapidly forming glucaric acid.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"22 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13368","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re1-phen/NiO). Multiple experimental characterizations together with theoretical calculations unravel the idea that the isolated Re atoms are suspended on the NiO surface, connected by phenanthroline ligands standing perpendicular to the surface. This unique structure provides the Re1-phen/NiO SAC with a strong capability to activate glucose molecules, enabling fully exposed Re=O double bonds in an open-ended reaction environment to simultaneously react with hydroxyl and aldehyde groups at both ends of the glucose molecule, rapidly forming glucaric acid.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.