Methanol-Enhanced Low-Cell-Voltage Hydrogen Generation at Industrial-Grade Current Density by Triadic Active Sites of Pt1–Pdn–(Ni,Co)(OH)x

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
An Pei, Ruikuan Xie, Lihua Zhu, Fengshun Wu, Zinan Huang, Yongyu Pang, Yu-Chung Chang, Guoliang Chai, Chih-Wen Pao, Qingsheng Gao, Congxiao Shang, Guang Li, Jinyu Ye, Huaze Zhu, Zhiqing Yang, Zhengxiao Guo
{"title":"Methanol-Enhanced Low-Cell-Voltage Hydrogen Generation at Industrial-Grade Current Density by Triadic Active Sites of Pt1–Pdn–(Ni,Co)(OH)x","authors":"An Pei, Ruikuan Xie, Lihua Zhu, Fengshun Wu, Zinan Huang, Yongyu Pang, Yu-Chung Chang, Guoliang Chai, Chih-Wen Pao, Qingsheng Gao, Congxiao Shang, Guang Li, Jinyu Ye, Huaze Zhu, Zhiqing Yang, Zhengxiao Guo","doi":"10.1021/jacs.4c12665","DOIUrl":null,"url":null,"abstract":"Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H<sub>2</sub> generation, avoiding its costly and risky distribution issues, but this “ME-to-H<sub>2</sub>” electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional Pt<sub>1</sub>Pd<i><sub>n</sub></i>/(Ni,Co)(OH)<sub><i>x</i></sub> catalyst with Pt single atoms (Pt<sub>1</sub>) and Pd nanoclusters (Pd<i><sub>n</sub></i>) anchored on OH-vacancy(V<sub>OH</sub>)-rich (Ni,Co)(OH)<sub><i>x</i></sub> nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H<sub>2</sub> generation. For MOR, OH* is preferentially adsorbed on Pd<i><sub>n</sub></i> and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt<sub>1</sub> with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH)<sub><i>x</i></sub>. The enhanced selectivity of the *CHOOH pathway, instead of *CO, sustains the MOR activity to a practically high current density. For HER, triadic Pt<sub>1</sub>, Pd<i><sub>n</sub></i>, and OH-vacancy sites on (Ni,Co)(OH)<sub><i>x</i></sub> create an “acid–base” microenvironment to facilitate water adsorption and splitting, forming H* species on Pt<sub>1</sub> and Pd<i><sub>n</sub></i>, and *OH at the vacancy, to promote efficient H<sub>2</sub> evolution from the asymmetric Pt<sub>1</sub> and Pd<i><sub>n</sub></i> sites via the Tafel mechanism. The triadic-site synergy opens new avenues for the design and synthesis of highly efficient and stable cofunctional catalysts for “on-site-on-demand” H<sub>2</sub> production, here facilitated by liquid methanol.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"36 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12665","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H2 generation, avoiding its costly and risky distribution issues, but this “ME-to-H2” electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional Pt1Pdn/(Ni,Co)(OH)x catalyst with Pt single atoms (Pt1) and Pd nanoclusters (Pdn) anchored on OH-vacancy(VOH)-rich (Ni,Co)(OH)x nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H2 generation. For MOR, OH* is preferentially adsorbed on Pdn and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt1 with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH)x. The enhanced selectivity of the *CHOOH pathway, instead of *CO, sustains the MOR activity to a practically high current density. For HER, triadic Pt1, Pdn, and OH-vacancy sites on (Ni,Co)(OH)x create an “acid–base” microenvironment to facilitate water adsorption and splitting, forming H* species on Pt1 and Pdn, and *OH at the vacancy, to promote efficient H2 evolution from the asymmetric Pt1 and Pdn sites via the Tafel mechanism. The triadic-site synergy opens new avenues for the design and synthesis of highly efficient and stable cofunctional catalysts for “on-site-on-demand” H2 production, here facilitated by liquid methanol.

Abstract Image

甲醇(ME)是一种液态氢载体,是按需现场制取 H2 的理想选择,可避免成本高昂且风险大的配送问题,但这种 "ME-H2 "电转化存在电压高(能耗大)和竞争性氧进化反应等问题。在此,我们证明了一种协同增效的 Pt1Pdn/(Ni,Co)(OH)x 共功能催化剂,其铂单原子(Pt1)和钯纳米团簇(Pdn)锚定在富含羟基空位(VOH)的(Ni,Co)(OH)x 纳米粒子上,形成了协同增效的三元活性位点,从而实现了甲醇增强型低压 H2 发电。在 MOR 中,OH* 优先吸附在 Pdn 上,然后在 (Ni,Co)(OH)x 表面氢键的帮助下,与邻近 Pt1 上吸附的中间产物(如 *CHO 或 *CHOOH)相互作用。*CHOOH途径而非*CO途径的选择性增强,使MOR活性持续到了实际上很高的电流密度。对于 HER 而言,(Ni,Co)(OH)x 上的三元 Pt1、Pdn 和 OH 空位创造了一个 "酸碱 "微环境,以促进水的吸附和分裂,在 Pt1 和 Pdn 上形成 H* 物种,在空位上形成 *OH,从而通过 Tafel 机制促进 H2 从不对称的 Pt1 和 Pdn 位点高效演化。三元位协同作用为设计和合成 "按需现场 "生产 H2 的高效、稳定的共功能催化剂开辟了新的途径,在这里,液态甲醇为催化剂提供了便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信