Germanium Atoms Exceed the Tetrahedral Coordination in MFI Zeolite

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eddy Dib, Qiudi Yue, Giorgia Confalonieri, Davide Salusso, Georgi N. Vayssilov, Mathias Barreau, Stoyan P. Gramatikov, Rossella Arletti, Francesco Dalena, Kirill A. Lomachenko, Diogenes Honorato Piva, Valentin Valtchev, Zhengxing Qin, Zi-Feng Yan, Xionghou Gao, Franck Fayon, Spyridon Zafeiratos, Oleg I. Lebedev, Svetlana Mintova
{"title":"Germanium Atoms Exceed the Tetrahedral Coordination in MFI Zeolite","authors":"Eddy Dib, Qiudi Yue, Giorgia Confalonieri, Davide Salusso, Georgi N. Vayssilov, Mathias Barreau, Stoyan P. Gramatikov, Rossella Arletti, Francesco Dalena, Kirill A. Lomachenko, Diogenes Honorato Piva, Valentin Valtchev, Zhengxing Qin, Zi-Feng Yan, Xionghou Gao, Franck Fayon, Spyridon Zafeiratos, Oleg I. Lebedev, Svetlana Mintova","doi":"10.1021/jacs.4c13278","DOIUrl":null,"url":null,"abstract":"Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO<sub>2</sub>, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration. Notably, the compensation of the ammonium template is achieved not through fluorine ions in the [4<sup>1</sup>5<sup>2</sup>6<sup>2</sup>] cages of the framework, as conventionally considered, but rather through oxygen. The GeMFI zeolite with the high Ge content reported in this work demonstrated exceptional thermal and hydrothermal stability, surpassing up to 1050 °C, thanks to both the double-bridge configuration and the defect-free structure. The unexpected role of germanium in MFI zeolite challenges previous assumptions, representing a paradigm shift in the understanding of porous germanosilicate structures, paving the way for a reevaluation of their synthesis, hydrolysis, and potential applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"28 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13278","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO2, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration. Notably, the compensation of the ammonium template is achieved not through fluorine ions in the [415262] cages of the framework, as conventionally considered, but rather through oxygen. The GeMFI zeolite with the high Ge content reported in this work demonstrated exceptional thermal and hydrothermal stability, surpassing up to 1050 °C, thanks to both the double-bridge configuration and the defect-free structure. The unexpected role of germanium in MFI zeolite challenges previous assumptions, representing a paradigm shift in the understanding of porous germanosilicate structures, paving the way for a reevaluation of their synthesis, hydrolysis, and potential applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信