Xuanguang Liu, Yujie Li, Chenguang Dai, Zhenchao Zhang, Lei Ding, Mengmeng Li, Hanyun Wang
{"title":"Extraction buildings from very high-resolution images with asymmetric siamese multitask networks and adversarial edge learning","authors":"Xuanguang Liu, Yujie Li, Chenguang Dai, Zhenchao Zhang, Lei Ding, Mengmeng Li, Hanyun Wang","doi":"10.1016/j.jag.2024.104349","DOIUrl":null,"url":null,"abstract":"Building extraction from very high-resolution remote-sensing images still faces two main issues: (1) small buildings are severely omitted and the extracted building shapes have a low consistency with ground truths. (2) supervised deep-learning methods have poor performance in few-shot scenarios, limiting the practical application of these methods. To address the first issue, we propose an asymmetric Siamese multitask network integrating adversarial edge learning called ASMBR-Net for building extraction. It contains an efficient asymmetric Siamese feature extractor comprising pre-trained backbones of convolutional neural networks and Transformers under pre-training and fine-tuning paradigms. This extractor balances the local and global feature representation and reduces training costs. Adversarial edge-learning technology automatically integrates edge constraints and strengthens the modeling ability of small and complex building-shaped patterns. Aiming to overcome the second issue, we introduce a self-training framework and design an instance transfer strategy to generate reliable pseudo-samples. We examined the proposed method on the WHU and Massachusetts (MA) datasets and a self-constructed Dongying (DY) dataset, comparing it with state-of-the-art methods. The experimental results show that our method achieves the highest F1-score of 96.06%, 86.90%, and 84.98% on the WHU, MA, and DY datasets, respectively. Ablation experiments further verify the effectiveness of the proposed method. The code is available at: <ce:inter-ref xlink:href=\"https://github.com/liuxuanguang/ASMBR-Net\" xlink:type=\"simple\">https://github.com/liuxuanguang/ASMBR-Net</ce:inter-ref>","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"82 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104349","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Building extraction from very high-resolution remote-sensing images still faces two main issues: (1) small buildings are severely omitted and the extracted building shapes have a low consistency with ground truths. (2) supervised deep-learning methods have poor performance in few-shot scenarios, limiting the practical application of these methods. To address the first issue, we propose an asymmetric Siamese multitask network integrating adversarial edge learning called ASMBR-Net for building extraction. It contains an efficient asymmetric Siamese feature extractor comprising pre-trained backbones of convolutional neural networks and Transformers under pre-training and fine-tuning paradigms. This extractor balances the local and global feature representation and reduces training costs. Adversarial edge-learning technology automatically integrates edge constraints and strengthens the modeling ability of small and complex building-shaped patterns. Aiming to overcome the second issue, we introduce a self-training framework and design an instance transfer strategy to generate reliable pseudo-samples. We examined the proposed method on the WHU and Massachusetts (MA) datasets and a self-constructed Dongying (DY) dataset, comparing it with state-of-the-art methods. The experimental results show that our method achieves the highest F1-score of 96.06%, 86.90%, and 84.98% on the WHU, MA, and DY datasets, respectively. Ablation experiments further verify the effectiveness of the proposed method. The code is available at: https://github.com/liuxuanguang/ASMBR-Net
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.