{"title":"Recurrences Reveal Shared Causal Drivers of Complex Time Series","authors":"William Gilpin","doi":"10.1103/physrevx.15.011005","DOIUrl":null,"url":null,"abstract":"Unmeasured causal forces influence diverse experimental time series, such as the transcription factors that regulate genes or the descending neurons that steer motor circuits. Combining the theory of skew-product dynamical systems with topological data analysis, we show that simultaneous recurrence events across multiple time series reveal the structure of their shared unobserved driving signal. We introduce a physics-based unsupervised learning algorithm that reconstructs causal drivers by iteratively building a recurrence graph with glasslike structure. As the amount of data increases, a percolation transition on this graph leads to weak ergodicity breaking for random walks—revealing the shared driver’s dynamics, even from strongly corrupted measurements. We relate reconstruction accuracy to the rate of information transfer from a chaotic driver to the response systems, and we find that effective reconstruction proceeds through gradual approximation of the driver’s dynamical attractor. Through extensive benchmarks against classical signal processing and machine learning techniques, we demonstrate our method’s ability to extract causal drivers from diverse experimental datasets spanning ecology, genomics, fluid dynamics, and physiology. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011005","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Unmeasured causal forces influence diverse experimental time series, such as the transcription factors that regulate genes or the descending neurons that steer motor circuits. Combining the theory of skew-product dynamical systems with topological data analysis, we show that simultaneous recurrence events across multiple time series reveal the structure of their shared unobserved driving signal. We introduce a physics-based unsupervised learning algorithm that reconstructs causal drivers by iteratively building a recurrence graph with glasslike structure. As the amount of data increases, a percolation transition on this graph leads to weak ergodicity breaking for random walks—revealing the shared driver’s dynamics, even from strongly corrupted measurements. We relate reconstruction accuracy to the rate of information transfer from a chaotic driver to the response systems, and we find that effective reconstruction proceeds through gradual approximation of the driver’s dynamical attractor. Through extensive benchmarks against classical signal processing and machine learning techniques, we demonstrate our method’s ability to extract causal drivers from diverse experimental datasets spanning ecology, genomics, fluid dynamics, and physiology. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.