Berry curvature and shift vector effects at high-order wave mixing in biased bilayer graphene

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
H. K. Avetissian, H. H. Matevosyan, G. F. Mkrtchian
{"title":"Berry curvature and shift vector effects at high-order wave mixing in biased bilayer graphene","authors":"H. K. Avetissian, H. H. Matevosyan, G. F. Mkrtchian","doi":"10.1103/physrevb.111.045415","DOIUrl":null,"url":null,"abstract":"In this paper, we present a microscopic quantum theory that elucidates the nonlinear and nonperturbative optical response of biased bilayer graphene subjected to bichromatic strong laser fields. This response is analyzed using a four-band Hamiltonian derived from calculations. For the laser-stimulated dynamics, we employ structure gauge-invariant evolutionary equations to accurately describe the evolution of the single-particle density matrix across the entire Brillouin zone. The resonant generation of electron-hole pairs by the high-frequency component of the field, combined with the induction of high-order harmonic generation and high-order wave mixing by the strong low-frequency field component, leads to significant alterations in the resulting spectra. These changes are driven by the effects of Berry curvature and the shift vector, which modify the relative contributions of interband and intraband channels, thereby fundamentally reshaping the radiation spectra at high-order frequency multiplication. The numerical results are further supported by approximate analytical calculations, demonstrating that high-order wave mixing can be modeled using the classical trajectory analysis of electron-hole pairs, with Berry curvature and the shift vector significantly influencing the saddle-point equations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"90 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.045415","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a microscopic quantum theory that elucidates the nonlinear and nonperturbative optical response of biased bilayer graphene subjected to bichromatic strong laser fields. This response is analyzed using a four-band Hamiltonian derived from calculations. For the laser-stimulated dynamics, we employ structure gauge-invariant evolutionary equations to accurately describe the evolution of the single-particle density matrix across the entire Brillouin zone. The resonant generation of electron-hole pairs by the high-frequency component of the field, combined with the induction of high-order harmonic generation and high-order wave mixing by the strong low-frequency field component, leads to significant alterations in the resulting spectra. These changes are driven by the effects of Berry curvature and the shift vector, which modify the relative contributions of interband and intraband channels, thereby fundamentally reshaping the radiation spectra at high-order frequency multiplication. The numerical results are further supported by approximate analytical calculations, demonstrating that high-order wave mixing can be modeled using the classical trajectory analysis of electron-hole pairs, with Berry curvature and the shift vector significantly influencing the saddle-point equations. Published by the American Physical Society 2025
偏压双层石墨烯高阶波混合时的贝里曲率和位移矢量效应
在本文中,我们提出了一个微观量子理论来解释双色强激光场下偏置双层石墨烯的非线性和非微扰光学响应。这种响应是用计算得出的四波段哈密顿量来分析的。对于激光激发动力学,我们采用结构规范不变演化方程来精确描述单粒子密度矩阵在整个布里渊区的演化。高频场分量共振产生电子-空穴对,再加上强低频场分量诱导产生高次谐波和高次波混频,导致所得光谱发生显著变化。这些变化是由Berry曲率和位移矢量的影响驱动的,它们改变了带间和带内通道的相对贡献,从而从根本上重塑了高阶频率倍增的辐射光谱。数值结果进一步得到近似解析计算的支持,表明可以用电子-空穴对的经典轨迹分析来模拟高阶波混频,其中Berry曲率和位移矢量对鞍点方程有显著影响。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信