Natalia Hermán-Sánchez, Mercedes del Rio-Moreno, Rubén Ciria, Marina E. Sánchez-Frias, Maite G. Fernández-Barrena, Iker Uriarte, Eduardo Chicano-Galvez, Ignacio Ortea, Ángela Peralbo-Molina, Javier Briceño, Matías A. Avila, Manuel Rodríguez-Perálvarez, Raúl M. Luque, Juan L. López-Cánovas, Manuel D. Gahete
{"title":"Quantitative proteomic analysis unveils a critical role of VARS1 in hepatocellular carcinoma aggressiveness through the modulation of MAGI1 expression","authors":"Natalia Hermán-Sánchez, Mercedes del Rio-Moreno, Rubén Ciria, Marina E. Sánchez-Frias, Maite G. Fernández-Barrena, Iker Uriarte, Eduardo Chicano-Galvez, Ignacio Ortea, Ángela Peralbo-Molina, Javier Briceño, Matías A. Avila, Manuel Rodríguez-Perálvarez, Raúl M. Luque, Juan L. López-Cánovas, Manuel D. Gahete","doi":"10.1186/s12943-024-02206-5","DOIUrl":null,"url":null,"abstract":"Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences. Non-targeted quantitative proteomics were performed on cytosolic and nuclear fractions of liver samples [HCC vs. non-tumour adjacent tissue (NTAT), n = 42 patients]. Changes were confirmed in 7 in silico HCC cohorts. Functional and molecular implications were evaluated on HCC-derived cell lines after silencing/overexpressing VARS1 and/or MAGI1. VARS1-overexpressing Hep3B cells were used for in vivo studies [Extreme Limiting Dilution Assay (ELDA) and orthotopic tumour formation]. Quantitative proteomics were performed on VARS1-overexpressing HCC cell lines. Quantitative proteomics revealed the dysregulation of the cytosolic and nuclear proteomes in HCC, and defined two proteomic HCC subgroups, the most aggressive associated to the dysregulation of the aminoacyl-tRNA synthetases (ARSs). ARSs dysregulation was corroborated in in silico HCC cohorts and associated to poor prognosis. Patients with ARSs upregulation had genomic/transcriptomic characteristics of the proliferative HCC. Valine tRNA-aminoacyl synthetase (VARS1) was the ARSs most consistently overexpressed and associated to aggressiveness. VARS1 modulation (silencing/overexpression) altered tumour establishment-associated parameters in vitro and/or in vivo. Quantitative proteomics on cells overexpressing VARS1 and rescue experiments identified the downregulation of MAGI1, a tumour suppressor in HCC, as a mediator of VARS1 function. Quantitative proteomics defines two prognosis-related proteomic HCC subgroups. ARSs machinery is dysregulated in the aggressive subgroup, bearing potential as prognostic biomarkers. VARS1 promotes aggressiveness through the modulation of MAGI1, representing a novel targetable vulnerability in HCC.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"29 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02206-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences. Non-targeted quantitative proteomics were performed on cytosolic and nuclear fractions of liver samples [HCC vs. non-tumour adjacent tissue (NTAT), n = 42 patients]. Changes were confirmed in 7 in silico HCC cohorts. Functional and molecular implications were evaluated on HCC-derived cell lines after silencing/overexpressing VARS1 and/or MAGI1. VARS1-overexpressing Hep3B cells were used for in vivo studies [Extreme Limiting Dilution Assay (ELDA) and orthotopic tumour formation]. Quantitative proteomics were performed on VARS1-overexpressing HCC cell lines. Quantitative proteomics revealed the dysregulation of the cytosolic and nuclear proteomes in HCC, and defined two proteomic HCC subgroups, the most aggressive associated to the dysregulation of the aminoacyl-tRNA synthetases (ARSs). ARSs dysregulation was corroborated in in silico HCC cohorts and associated to poor prognosis. Patients with ARSs upregulation had genomic/transcriptomic characteristics of the proliferative HCC. Valine tRNA-aminoacyl synthetase (VARS1) was the ARSs most consistently overexpressed and associated to aggressiveness. VARS1 modulation (silencing/overexpression) altered tumour establishment-associated parameters in vitro and/or in vivo. Quantitative proteomics on cells overexpressing VARS1 and rescue experiments identified the downregulation of MAGI1, a tumour suppressor in HCC, as a mediator of VARS1 function. Quantitative proteomics defines two prognosis-related proteomic HCC subgroups. ARSs machinery is dysregulated in the aggressive subgroup, bearing potential as prognostic biomarkers. VARS1 promotes aggressiveness through the modulation of MAGI1, representing a novel targetable vulnerability in HCC.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.