{"title":"Interactive visualization and interpretation of pangenome graphs by linear-reference-based coordinate projection and annotation integration","authors":"Zepu Miao, Jia-Xing Yue","doi":"10.1101/gr.279461.124","DOIUrl":null,"url":null,"abstract":"With the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG). VRPG provides efficient and intuitive supports for exploring and annotating pangenome graphs along a linear-genome-based coordinate system (e.g., that of a primary linear reference genome). Moreover, VRPG offers many unique features such as in-graph path highlighting for graph-constituent input assemblies, copy number characterization for graph-embedding nodes, graph-based mapping for query sequences, all of which are highly valuable for researchers working with pangenome graphs. Additionally, VRPG enables side-by-side visualization between the graph-based pangenome representation and the conventional primary-linear-reference-genome-based feature annotations, therefore seamlessly bridging the graph and linear genomic contexts. To further demonstrate its functionality and scalability, we applied VRPG to the cutting-edge yeast and human reference pangenome graphs derived from hundreds of high-quality genome assemblies via a dedicated web portal and examined their local genome diversity in the graph contexts.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"27 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279461.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG). VRPG provides efficient and intuitive supports for exploring and annotating pangenome graphs along a linear-genome-based coordinate system (e.g., that of a primary linear reference genome). Moreover, VRPG offers many unique features such as in-graph path highlighting for graph-constituent input assemblies, copy number characterization for graph-embedding nodes, graph-based mapping for query sequences, all of which are highly valuable for researchers working with pangenome graphs. Additionally, VRPG enables side-by-side visualization between the graph-based pangenome representation and the conventional primary-linear-reference-genome-based feature annotations, therefore seamlessly bridging the graph and linear genomic contexts. To further demonstrate its functionality and scalability, we applied VRPG to the cutting-edge yeast and human reference pangenome graphs derived from hundreds of high-quality genome assemblies via a dedicated web portal and examined their local genome diversity in the graph contexts.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.