Towards Accurate Post-Training Quantization of Vision Transformers via Error Reduction

Yunshan Zhong;You Huang;Jiawei Hu;Yuxin Zhang;Rongrong Ji
{"title":"Towards Accurate Post-Training Quantization of Vision Transformers via Error Reduction","authors":"Yunshan Zhong;You Huang;Jiawei Hu;Yuxin Zhang;Rongrong Ji","doi":"10.1109/TPAMI.2025.3528042","DOIUrl":null,"url":null,"abstract":"Post-training quantization (PTQ) for vision transformers (ViTs) has received increasing attention from both academic and industrial communities due to its minimal data needs and high time efficiency. However, many current methods fail to account for the complex interactions between quantized weights and activations, resulting in significant quantization errors and suboptimal performance. This paper presents ERQ, an innovative two-step PTQ method specifically crafted to reduce quantization errors arising from activation and weight quantization sequentially. The first step, Activation quantization error reduction (Aqer), first applies Reparameterization Initialization aimed at mitigating initial quantization errors in high-variance activations. Then, it further mitigates the errors by formulating a Ridge Regression problem, which updates the weights maintained at full-precision using a closed-form solution. The second step, Weight quantization error reduction (Wqer), first applies Dual Uniform Quantization to handle weights with numerous outliers, which arise from adjustments made during Reparameterization Initialization, thereby reducing initial weight quantization errors. Then, it employs an iterative approach to further tackle the errors. In each iteration, it adopts Rounding Refinement that uses an empirically derived, efficient proxy to refine the rounding directions of quantized weights, complemented by a Ridge Regression solver to reduce the errors. Comprehensive experimental results demonstrate ERQ’s superior performance across various ViTs variants and tasks. For example, ERQ surpasses the state-of-the-art GPTQ by a notable 36.81% in accuracy for W3A4 ViT-S.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2676-2692"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839431/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Post-training quantization (PTQ) for vision transformers (ViTs) has received increasing attention from both academic and industrial communities due to its minimal data needs and high time efficiency. However, many current methods fail to account for the complex interactions between quantized weights and activations, resulting in significant quantization errors and suboptimal performance. This paper presents ERQ, an innovative two-step PTQ method specifically crafted to reduce quantization errors arising from activation and weight quantization sequentially. The first step, Activation quantization error reduction (Aqer), first applies Reparameterization Initialization aimed at mitigating initial quantization errors in high-variance activations. Then, it further mitigates the errors by formulating a Ridge Regression problem, which updates the weights maintained at full-precision using a closed-form solution. The second step, Weight quantization error reduction (Wqer), first applies Dual Uniform Quantization to handle weights with numerous outliers, which arise from adjustments made during Reparameterization Initialization, thereby reducing initial weight quantization errors. Then, it employs an iterative approach to further tackle the errors. In each iteration, it adopts Rounding Refinement that uses an empirically derived, efficient proxy to refine the rounding directions of quantized weights, complemented by a Ridge Regression solver to reduce the errors. Comprehensive experimental results demonstrate ERQ’s superior performance across various ViTs variants and tasks. For example, ERQ surpasses the state-of-the-art GPTQ by a notable 36.81% in accuracy for W3A4 ViT-S.
基于误差减小的视觉变换训练后精确量化研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信