Replication stress increases de novo CNVs across the malaria parasite genome.

Noah J Brown, Aleksander Luniewski, Xuanxuan Yu, Michelle D Warthan, Shiwei Liu, Julia Zulawinska, Syed Ahmad, Nadia Prasad, Molly Congdon, Webster Santos, Feifei Xiao, Jennifer L Guler
{"title":"Replication stress increases de novo CNVs across the malaria parasite genome.","authors":"Noah J Brown, Aleksander Luniewski, Xuanxuan Yu, Michelle D Warthan, Shiwei Liu, Julia Zulawinska, Syed Ahmad, Nadia Prasad, Molly Congdon, Webster Santos, Feifei Xiao, Jennifer L Guler","doi":"10.1101/2024.12.19.629492","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs in only a few genomes are often overlooked but important; if beneficial, a de novo CNV that arises in a single genome can expand during selection to create a population of cells with novel characteristics. While single cell methods for studying de novo CNVs are increasing, we continue to lack information about CNV dynamics in rapidly evolving microbial populations. Here, we investigated de novo CNVs in the genome of the Plasmodium parasite that causes human malaria. The highly AT-rich P. falciparum genome readily accumulates CNVs that facilitate rapid adaptation. We employed low-input genomics and specialized computational tools to evaluate the impact of sub-lethal stress on the de novo CNV rate. We observed a significant increase in genome-wide de novo CNVs following treatment with an antimalarial compound that inhibits replication. De novo CNVs encompassed genes from various cellular pathways participating in human infection. This snapshot of CNV dynamics emphasizes the connection between replication stress, DNA repair, and CNV generation in this important microbial pathogen.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.19.629492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs in only a few genomes are often overlooked but important; if beneficial, a de novo CNV that arises in a single genome can expand during selection to create a population of cells with novel characteristics. While single cell methods for studying de novo CNVs are increasing, we continue to lack information about CNV dynamics in rapidly evolving microbial populations. Here, we investigated de novo CNVs in the genome of the Plasmodium parasite that causes human malaria. The highly AT-rich P. falciparum genome readily accumulates CNVs that facilitate rapid adaptation. We employed low-input genomics and specialized computational tools to evaluate the impact of sub-lethal stress on the de novo CNV rate. We observed a significant increase in genome-wide de novo CNVs following treatment with an antimalarial compound that inhibits replication. De novo CNVs encompassed genes from various cellular pathways participating in human infection. This snapshot of CNV dynamics emphasizes the connection between replication stress, DNA repair, and CNV generation in this important microbial pathogen.

Abstract Image

Abstract Image

Abstract Image

复制压力增加了整个疟原虫基因组中的新生 CNV。
大基因组区域拷贝数的变化被称为拷贝数变异(CNVs),是许多生物体重要表型的原因。当 CNVs 存在于大部分细胞群体中时,很容易用传统方法识别出来。然而,在整个群体中仅存在于少数基因组中的 CNV 常常被忽视,但却非常重要;如果在特定条件下是有益的,在单个基因组中产生的新 CNV 可以在选择过程中扩展,从而产生具有新特征的更大细胞群体。虽然研究新生 CNV 的单细胞方法越来越多,但我们仍然缺乏有关快速进化微生物种群中 CNV 动态的信息。在这里,我们研究了导致人类疟疾的疟原虫基因组中的新生 CNV。AT高度丰富的恶性疟原虫基因组很容易积累CNV,从而促进对新药物和宿主环境的快速适应。我们采用了针对这种独特基因组进行优化的低投入基因组学方法以及专门的计算工具,以评估施加压力前后的新生 CNV 率。我们观察到,在使用复制抑制剂处理后,全基因组的新生 CNV 明显增加。这些应激诱导的新生 CNV 包含有助于各种细胞通路的基因,而且在临床寄生虫基因组中往往会发生改变。这种 CNV 动态快照强调了这种重要微生物病原体中复制应激、DNA 修复和 CNV 生成之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信