Data-driven score tuning for ChooseLD: A structure-based drug design algorithm with empirical scoring and evaluation of ligand-protein docking predictability.

IF 1.6 Q4 BIOPHYSICS
Biophysics and physicobiology Pub Date : 2024-09-21 eCollection Date: 2024-01-01 DOI:10.2142/biophysico.bppb-v21.0021
Akihiro Masuda, Daichi Sadato, Mitsuo Iwadate
{"title":"Data-driven score tuning for ChooseLD: A structure-based drug design algorithm with empirical scoring and evaluation of ligand-protein docking predictability.","authors":"Akihiro Masuda, Daichi Sadato, Mitsuo Iwadate","doi":"10.2142/biophysico.bppb-v21.0021","DOIUrl":null,"url":null,"abstract":"<p><p>Computerized molecular docking methodologies are pivotal in <i>in-silico</i> screening, a crucial facet of modern drug design. ChooseLD, a docking simulation software, combines structure- and ligand-based drug design methods with empirical scoring. Despite advancements in computerized molecular docking methodologies, there remains a gap in optimizing the predictive capabilities of docking simulation software. Accordingly, using the docking scores output by ChooseLD, we evaluated its performance in predicting the bioactivity of G-protein coupled receptor (GPCR) and kinase bioactivity, specifically focusing on Ki and IC<sub>50</sub> values. We evaluated the accuracy of our algorithm through a comparative analysis using force-field-based predictions from AutoDock Vina. Our findings suggested that the modified ChooseLD could accurately predict the bioactivity, especially in scenarios with a substantial number of known ligands. These findings highlight the importance of selecting algorithms based on the characteristics of the prediction targets. Furthermore, addressing partial model fitting with database knowledge was demonstrated to be effective in overcoming this challenge. Overall, these findings contribute to the refinement and optimization of methodologies in computer-aided drug design, ultimately advancing the efficiency and reliability of <i>in-silico</i> screening processes.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 3","pages":"e210021"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Computerized molecular docking methodologies are pivotal in in-silico screening, a crucial facet of modern drug design. ChooseLD, a docking simulation software, combines structure- and ligand-based drug design methods with empirical scoring. Despite advancements in computerized molecular docking methodologies, there remains a gap in optimizing the predictive capabilities of docking simulation software. Accordingly, using the docking scores output by ChooseLD, we evaluated its performance in predicting the bioactivity of G-protein coupled receptor (GPCR) and kinase bioactivity, specifically focusing on Ki and IC50 values. We evaluated the accuracy of our algorithm through a comparative analysis using force-field-based predictions from AutoDock Vina. Our findings suggested that the modified ChooseLD could accurately predict the bioactivity, especially in scenarios with a substantial number of known ligands. These findings highlight the importance of selecting algorithms based on the characteristics of the prediction targets. Furthermore, addressing partial model fitting with database knowledge was demonstrated to be effective in overcoming this challenge. Overall, these findings contribute to the refinement and optimization of methodologies in computer-aided drug design, ultimately advancing the efficiency and reliability of in-silico screening processes.

ChooseLD的数据驱动评分调整:一种基于结构的药物设计算法,具有配体-蛋白质对接可预测性的经验评分和评估。
计算机分子对接方法是关键的在硅筛选,现代药物设计的一个关键方面。ChooseLD是一款对接仿真软件,将基于结构和配体的药物设计方法与经验评分相结合。尽管计算机化分子对接方法取得了进步,但在优化对接模拟软件的预测能力方面仍然存在差距。因此,利用ChooseLD输出的对接评分,我们评估了其在预测g蛋白偶联受体(GPCR)生物活性和激酶生物活性方面的性能,特别是Ki和IC50值。我们通过AutoDock Vina基于力场预测的对比分析来评估算法的准确性。我们的研究结果表明,修饰的ChooseLD可以准确地预测生物活性,特别是在已知配体数量较多的情况下。这些发现突出了基于预测目标特征选择算法的重要性。此外,利用数据库知识处理部分模型拟合被证明是克服这一挑战的有效方法。总的来说,这些发现有助于改进和优化计算机辅助药物设计方法,最终提高计算机筛选过程的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信