The Post-Stroke Speech Transcription (PSST) Challenge.

Robert C Gale, Mikala Fleegle, Gerasimos Fergadiotis, Steven Bedrick
{"title":"The Post-Stroke Speech Transcription (PSST) Challenge.","authors":"Robert C Gale, Mikala Fleegle, Gerasimos Fergadiotis, Steven Bedrick","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We present the outcome of the Post-Stroke Speech Transcription (PSST) challenge. For the challenge, we prepared a new data resource of responses to two confrontation naming tests found in AphasiaBank, extracting audio and adding new phonemic transcripts for each response. The challenge consisted of two tasks. Task A asked challengers to build an automatic speech recognizer (ASR) for phonemic transcription of the PSST samples, evaluated in terms of phoneme error rate (PER) as well as a finer-grained metric derived from phonological feature theory, feature error rate (FER). The best model had a 9.9% FER / 20.0% PER, improving on our baseline by a relative 18% and 24%, respectively. Task B approximated a downstream assessment task, asking challengers to identify whether each recording contained a correctly pronounced target word. Challengers were unable to improve on the baseline algorithm; however, using this algorithm with the improved transcripts from Task A resulted in 92.8% accuracy / 0.921 F1, a relative improvement of 2.8% and 3.3%, respectively.</p>","PeriodicalId":91924,"journal":{"name":"LREC ... International Conference on Language Resources & Evaluation : [proceedings]. International Conference on Language Resources & Evaluation","volume":"2022 RaPID4 Workshop","pages":"41-55"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LREC ... International Conference on Language Resources & Evaluation : [proceedings]. International Conference on Language Resources & Evaluation","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the outcome of the Post-Stroke Speech Transcription (PSST) challenge. For the challenge, we prepared a new data resource of responses to two confrontation naming tests found in AphasiaBank, extracting audio and adding new phonemic transcripts for each response. The challenge consisted of two tasks. Task A asked challengers to build an automatic speech recognizer (ASR) for phonemic transcription of the PSST samples, evaluated in terms of phoneme error rate (PER) as well as a finer-grained metric derived from phonological feature theory, feature error rate (FER). The best model had a 9.9% FER / 20.0% PER, improving on our baseline by a relative 18% and 24%, respectively. Task B approximated a downstream assessment task, asking challengers to identify whether each recording contained a correctly pronounced target word. Challengers were unable to improve on the baseline algorithm; however, using this algorithm with the improved transcripts from Task A resulted in 92.8% accuracy / 0.921 F1, a relative improvement of 2.8% and 3.3%, respectively.

中风后语音转录(PSST)挑战。
我们提出了脑卒中后语音转录(PSST)挑战的结果。针对这一挑战,我们准备了一个新的数据源,其中包括在AphasiaBank中发现的两个对抗命名测试的响应,提取音频并为每个响应添加新的音位转录。这项挑战包括两项任务。任务A要求挑战者构建一个自动语音识别器(ASR),用于PSST样本的音位转录,并根据音位错误率(PER)和基于音位特征理论的更细粒度度量,即特征错误率(FER)进行评估。最佳模型的FER为9.9% / PER为20.0%,相对于我们的基线分别提高了18%和24%。任务B近似于下游评估任务,要求挑战者识别每个录音是否包含正确发音的目标单词。挑战者无法改进基线算法;然而,将该算法与Task A的改进转录本一起使用,准确率为92.8% / 0.921 F1,相对分别提高2.8%和3.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信