ICoN: integration using co-attention across biological networks.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-22 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae182
Nure Tasnina, T M Murali
{"title":"ICoN: integration using co-attention across biological networks.","authors":"Nure Tasnina, T M Murali","doi":"10.1093/bioadv/vbae182","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Molecular interaction networks are powerful tools for studying cellular functions. Integrating diverse types of networks enhances performance in downstream tasks such as gene module detection and protein function prediction. The challenge lies in extracting meaningful protein feature representations due to varying levels of sparsity and noise across these heterogeneous networks.</p><p><strong>Results: </strong>We propose ICoN, a novel unsupervised graph neural network model that takes multiple protein-protein association networks as inputs and generates a feature representation for each protein that integrates the topological information from all the networks. A key contribution of ICoN is exploiting a mechanism called \"co-attention\" that enables cross-network communication during training. The model also incorporates a denoising training technique, introducing perturbations to each input network and training the model to reconstruct the original network from its corrupted version. Our experimental results demonstrate that ICoN surpasses individual networks across three downstream tasks: gene module detection, gene coannotation prediction, and protein function prediction. Compared to existing unsupervised network integration models, ICoN exhibits superior performance across the majority of downstream tasks and shows enhanced robustness against noise. This work introduces a promising approach for effectively integrating diverse protein-protein association networks, aiming to achieve a biologically meaningful representation of proteins.</p><p><strong>Availability and implementation: </strong>The ICoN software is available under the GNU Public License v3 at https://github.com/Murali-group/ICoN.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae182"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Molecular interaction networks are powerful tools for studying cellular functions. Integrating diverse types of networks enhances performance in downstream tasks such as gene module detection and protein function prediction. The challenge lies in extracting meaningful protein feature representations due to varying levels of sparsity and noise across these heterogeneous networks.

Results: We propose ICoN, a novel unsupervised graph neural network model that takes multiple protein-protein association networks as inputs and generates a feature representation for each protein that integrates the topological information from all the networks. A key contribution of ICoN is exploiting a mechanism called "co-attention" that enables cross-network communication during training. The model also incorporates a denoising training technique, introducing perturbations to each input network and training the model to reconstruct the original network from its corrupted version. Our experimental results demonstrate that ICoN surpasses individual networks across three downstream tasks: gene module detection, gene coannotation prediction, and protein function prediction. Compared to existing unsupervised network integration models, ICoN exhibits superior performance across the majority of downstream tasks and shows enhanced robustness against noise. This work introduces a promising approach for effectively integrating diverse protein-protein association networks, aiming to achieve a biologically meaningful representation of proteins.

Availability and implementation: The ICoN software is available under the GNU Public License v3 at https://github.com/Murali-group/ICoN.

ICoN:利用生物网络的共同关注进行整合。
动机:分子相互作用网络是研究细胞功能的有力工具。整合不同类型的网络可以提高下游任务的性能,如基因模块检测和蛋白质功能预测。挑战在于提取有意义的蛋白质特征表示,由于不同程度的稀疏和噪声在这些异质网络。结果:我们提出了一种新的无监督图神经网络模型ICoN,该模型将多个蛋白质-蛋白质关联网络作为输入,并为每个蛋白质生成一个特征表示,该特征表示集成了来自所有网络的拓扑信息。ICoN的一个关键贡献是利用了一种称为“共同注意”的机制,使训练期间的跨网络通信成为可能。该模型还结合了去噪训练技术,向每个输入网络引入扰动,并训练模型从其损坏版本重建原始网络。我们的实验结果表明,ICoN在三个下游任务上优于单个网络:基因模块检测、基因共注释预测和蛋白质功能预测。与现有的无监督网络集成模型相比,ICoN在大多数下游任务中表现出卓越的性能,并显示出增强的抗噪声鲁棒性。这项工作引入了一种有前途的方法来有效地整合各种蛋白质-蛋白质关联网络,旨在实现蛋白质的生物学意义表示。可用性和实现:ICoN软件在GNU公共许可证v3下可在https://github.com/Murali-group/ICoN获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信