Humans and Large Language Models in Clinical Decision Support: A Study with Medical Calculators.

ArXiv Pub Date : 2025-03-21
Nicholas Wan, Qiao Jin, Joey Chan, Guangzhi Xiong, Serina Applebaum, Aidan Gilson, Reid McMurry, R Andrew Taylor, Aidong Zhang, Qingyu Chen, Zhiyong Lu
{"title":"Humans and Large Language Models in Clinical Decision Support: A Study with Medical Calculators.","authors":"Nicholas Wan, Qiao Jin, Joey Chan, Guangzhi Xiong, Serina Applebaum, Aidan Gilson, Reid McMurry, R Andrew Taylor, Aidong Zhang, Qingyu Chen, Zhiyong Lu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Although large language models (LLMs) have been assessed for general medical knowledge using licensing exams, their ability to support clinical decision-making, such as selecting medical calculators, remains uncertain. We assessed nine LLMs, including open-source, proprietary, and domain-specific models, with 1,009 multiple-choice question-answer pairs across 35 clinical calculators and compared LLMs to humans on a subset of questions. While the highest-performing LLM, OpenAI o1, provided an answer accuracy of 66.0% (CI: 56.7-75.3%) on the subset of 100 questions, two human annotators nominally outperformed LLMs with an average answer accuracy of 79.5% (CI: 73.5-85.0%). Ultimately, we evaluated medical trainees and LLMs in recommending medical calculators across clinical scenarios like risk stratification and diagnosis. With error analysis showing that the highest-performing LLMs continue to make mistakes in comprehension (49.3% of errors) and calculator knowledge (7.1% of errors), our findings highlight that LLMs are not superior to humans in calculator recommendation.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although large language models (LLMs) have been assessed for general medical knowledge using licensing exams, their ability to support clinical decision-making, such as selecting medical calculators, remains uncertain. We assessed nine LLMs, including open-source, proprietary, and domain-specific models, with 1,009 multiple-choice question-answer pairs across 35 clinical calculators and compared LLMs to humans on a subset of questions. While the highest-performing LLM, OpenAI o1, provided an answer accuracy of 66.0% (CI: 56.7-75.3%) on the subset of 100 questions, two human annotators nominally outperformed LLMs with an average answer accuracy of 79.5% (CI: 73.5-85.0%). Ultimately, we evaluated medical trainees and LLMs in recommending medical calculators across clinical scenarios like risk stratification and diagnosis. With error analysis showing that the highest-performing LLMs continue to make mistakes in comprehension (49.3% of errors) and calculator knowledge (7.1% of errors), our findings highlight that LLMs are not superior to humans in calculator recommendation.

在复杂的临床决策中,人类仍然优于大型语言模型:医疗计算器研究
虽然大语言模型(LLMs)已通过医学执业资格考试对医学常识进行了评估,但其有效支持临床决策任务(如选择和使用医学计算器)的能力仍不确定。在此,我们评估了医学受训者和 LLMs 针对各种多选临床情景(如风险分层、预后和疾病诊断)推荐医学计算器的能力。我们评估了八种 LLM,包括开源模型、专有模型和特定领域模型,使用了 35 种临床计算器中的 1009 个问题-答案对,并测量了人类在 100 个问题子集上的表现。虽然性能最高的 LLM GPT-4o 的答案准确率为 74.3%(CI:71.5-76.9%),但人类注释者的平均准确率为 79.5%(CI:73.5-85.0%),超过了 LLM。错误分析表明,表现最好的 LLM 在理解能力(56.6%)和计算器知识(8.1%)方面仍然会犯错误,我们的研究结果强调,在计算器推荐等复杂的临床任务上,人类仍然能够超越 LLM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信