Evaluation of a context-aware chatbot using retrieval-augmented generation for answering clinical questions on medication-related osteonecrosis of the jaw.

IF 2.1 2区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
David Steybe, Philipp Poxleitner, Suad Aljohani, Bente Brokstad Herlofson, Ourania Nicolatou-Galitis, Vinod Patel, Stefano Fedele, Tae-Geon Kwon, Vittorio Fusco, Sarina E C Pichardo, Katharina Theresa Obermeier, Sven Otto, Alexander Rau, Maximilian Frederik Russe
{"title":"Evaluation of a context-aware chatbot using retrieval-augmented generation for answering clinical questions on medication-related osteonecrosis of the jaw.","authors":"David Steybe, Philipp Poxleitner, Suad Aljohani, Bente Brokstad Herlofson, Ourania Nicolatou-Galitis, Vinod Patel, Stefano Fedele, Tae-Geon Kwon, Vittorio Fusco, Sarina E C Pichardo, Katharina Theresa Obermeier, Sven Otto, Alexander Rau, Maximilian Frederik Russe","doi":"10.1016/j.jcms.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>The potential of large language models (LLMs) in medical applications is significant, and Retrieval-augmented generation (RAG) can address the weaknesses of these models in terms of data transparency and scientific accuracy by incorporating current scientific knowledge into responses. In this study, RAG and GPT-4 by OpenAI were applied to develop GuideGPT, a context aware chatbot integrated with a knowledge database from 449 scientific publications designed to provide answers on the prevention, diagnosis, and treatment of medication-related osteonecrosis of the jaw (MRONJ). A comparison was made with a generic LLM (\"PureGPT\") across 30 MRONJ-related questions. Ten international experts in MRONJ evaluated the responses based on content, language, scientific explanation, and agreement using 5-point Likert scales. Statistical analysis using the Mann-Whitney U test showed significantly better ratings for GuideGPT than PureGPT regarding content (p = 0.006), scientific explanation (p = 0.032), and agreement (p = 0.008), though not for language (p = 0.407). Thus, this study demonstrates RAG to be a promising tool to improve response quality and reliability of LLMs by incorporating domain-specific knowledge. This approach addresses the limitations of generic chatbots and can provide traceable and up-to-date responses essential for clinical practice.</p>","PeriodicalId":54851,"journal":{"name":"Journal of Cranio-Maxillofacial Surgery","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cranio-Maxillofacial Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcms.2024.12.009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of large language models (LLMs) in medical applications is significant, and Retrieval-augmented generation (RAG) can address the weaknesses of these models in terms of data transparency and scientific accuracy by incorporating current scientific knowledge into responses. In this study, RAG and GPT-4 by OpenAI were applied to develop GuideGPT, a context aware chatbot integrated with a knowledge database from 449 scientific publications designed to provide answers on the prevention, diagnosis, and treatment of medication-related osteonecrosis of the jaw (MRONJ). A comparison was made with a generic LLM ("PureGPT") across 30 MRONJ-related questions. Ten international experts in MRONJ evaluated the responses based on content, language, scientific explanation, and agreement using 5-point Likert scales. Statistical analysis using the Mann-Whitney U test showed significantly better ratings for GuideGPT than PureGPT regarding content (p = 0.006), scientific explanation (p = 0.032), and agreement (p = 0.008), though not for language (p = 0.407). Thus, this study demonstrates RAG to be a promising tool to improve response quality and reliability of LLMs by incorporating domain-specific knowledge. This approach addresses the limitations of generic chatbots and can provide traceable and up-to-date responses essential for clinical practice.

评估使用检索增强生成的上下文感知聊天机器人回答颌骨药物相关骨坏死的临床问题。
大型语言模型(LLM)在医疗应用中的潜力巨大,而检索增强生成(RAG)可以通过将当前的科学知识纳入回复来解决这些模型在数据透明度和科学准确性方面的弱点。在本研究中,RAG 和 OpenAI 的 GPT-4 被应用于开发 GuideGPT,这是一个上下文感知聊天机器人,集成了来自 449 篇科学出版物的知识数据库,旨在为药物相关性颌骨坏死(MRONJ)的预防、诊断和治疗提供答案。在 30 个与 MRONJ 相关的问题上,该聊天机器人与通用 LLM("PureGPT")进行了比较。十位国际 MRONJ 专家使用 5 点李克特量表,根据内容、语言、科学解释和一致性对回答进行了评估。使用 Mann-Whitney U 检验进行的统计分析显示,GuideGPT 在内容(p = 0.006)、科学解释(p = 0.032)和一致性(p = 0.008)方面的评分明显优于 PureGPT,但在语言(p = 0.407)方面的评分不尽相同。因此,本研究表明,RAG 是一种很有前途的工具,可通过纳入特定领域的知识来提高法律硕士的回答质量和可靠性。这种方法解决了通用聊天机器人的局限性,可以提供临床实践中必不可少的可追溯的最新回复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
22.60%
发文量
117
审稿时长
70 days
期刊介绍: The Journal of Cranio-Maxillofacial Surgery publishes articles covering all aspects of surgery of the head, face and jaw. Specific topics covered recently have included: • Distraction osteogenesis • Synthetic bone substitutes • Fibroblast growth factors • Fetal wound healing • Skull base surgery • Computer-assisted surgery • Vascularized bone grafts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信