Annotation-free deep learning algorithm trained on hematoxylin & eosin images predicts epithelial-to-mesenchymal transition phenotype and endocrine response in estrogen receptor-positive breast cancer.
{"title":"Annotation-free deep learning algorithm trained on hematoxylin & eosin images predicts epithelial-to-mesenchymal transition phenotype and endocrine response in estrogen receptor-positive breast cancer.","authors":"Kaimin Hu, Yinan Wu, Yajing Huang, Meiqi Zhou, Yanyan Wang, Xingru Huang","doi":"10.1186/s13058-025-01959-1","DOIUrl":null,"url":null,"abstract":"<p><p>Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective. To confirm the presence of morphological discrepancies in tumor tissues of ER+ breast cancer classified as epithelial- and mesenchymal-phenotypes according to EMT-related transcriptional features, we trained deep learning algorithms based on EfficientNetV2 architecture to assign the phenotypic status for each patient utilizing hematoxylin & eosin (H&E)-stained slides from The Cancer Genome Atlas database. Our classifier model accurately identified the precise phenotypic status, achieving an area under the curve (AUC) of 0.886 at the tile-level and an AUC of 0.910 at the slide-level. Furthermore, we evaluated the efficacy of the classifier in predicting endocrine response using data from an independent ER+ breast cancer patient cohort. Our classifier achieved a predicting accuracy of 81.25%, and 88.7% slides labeled as endocrine resistant were predicted as the mesenchymal-phenotype, while 75.6% slides labeled as sensitive were predicted as the epithelial-phenotype. Our work introduces an H&E-based framework capable of accurately predicting EMT phenotype and endocrine response for ER+ breast cancer, demonstrating its potential for clinical application and benefit.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"6"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01959-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective. To confirm the presence of morphological discrepancies in tumor tissues of ER+ breast cancer classified as epithelial- and mesenchymal-phenotypes according to EMT-related transcriptional features, we trained deep learning algorithms based on EfficientNetV2 architecture to assign the phenotypic status for each patient utilizing hematoxylin & eosin (H&E)-stained slides from The Cancer Genome Atlas database. Our classifier model accurately identified the precise phenotypic status, achieving an area under the curve (AUC) of 0.886 at the tile-level and an AUC of 0.910 at the slide-level. Furthermore, we evaluated the efficacy of the classifier in predicting endocrine response using data from an independent ER+ breast cancer patient cohort. Our classifier achieved a predicting accuracy of 81.25%, and 88.7% slides labeled as endocrine resistant were predicted as the mesenchymal-phenotype, while 75.6% slides labeled as sensitive were predicted as the epithelial-phenotype. Our work introduces an H&E-based framework capable of accurately predicting EMT phenotype and endocrine response for ER+ breast cancer, demonstrating its potential for clinical application and benefit.
期刊介绍:
Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.