Fatemeh Sadat Shafiei, Saeid Abroun, Sadaf Vahdat, Mohammad Rafiee
{"title":"Omics approaches: Role in acute myeloid leukemia biomarker discovery and therapy.","authors":"Fatemeh Sadat Shafiei, Saeid Abroun, Sadaf Vahdat, Mohammad Rafiee","doi":"10.1016/j.cancergen.2024.12.006","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has the highest fatality rate. Patients aged 65 and above exhibit the poorest prognosis, with a mere 30 % survival rate within one year. One important issue in optimizing outcomes for AML patients is their limited ability to predict responses to specific therapies, response duration, and likelihood of relapse. Despite rigorous therapeutic interventions, a significant proportion of patients experience relapse. Consequently, there is a pressing need to introduce new targets for therapy. Sequencing and biotechnology have come a long way in the last ten years. This has made it easier for many omics technologies, like genomics, transcriptomics, proteomics, and metabolomics, to study molecular mechanisms of AML. An integrative approach is necessary to understand a complex biological process fully and offers an important opportunity to understand the information underlying diseases. In this review, we studied papers published between 2010 and 2024 employing omics approaches encompassing diagnosis, prognosis, and risk stratification of AML. Finally, we discuss prospects and challenges in applying -omics technologies to the discovery of novel biomarkers and therapy targets. Our review may be helpful for omics researchers who want to study AML from different molecular aspects.</p>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":"292-293 ","pages":"14-26"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cancergen.2024.12.006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has the highest fatality rate. Patients aged 65 and above exhibit the poorest prognosis, with a mere 30 % survival rate within one year. One important issue in optimizing outcomes for AML patients is their limited ability to predict responses to specific therapies, response duration, and likelihood of relapse. Despite rigorous therapeutic interventions, a significant proportion of patients experience relapse. Consequently, there is a pressing need to introduce new targets for therapy. Sequencing and biotechnology have come a long way in the last ten years. This has made it easier for many omics technologies, like genomics, transcriptomics, proteomics, and metabolomics, to study molecular mechanisms of AML. An integrative approach is necessary to understand a complex biological process fully and offers an important opportunity to understand the information underlying diseases. In this review, we studied papers published between 2010 and 2024 employing omics approaches encompassing diagnosis, prognosis, and risk stratification of AML. Finally, we discuss prospects and challenges in applying -omics technologies to the discovery of novel biomarkers and therapy targets. Our review may be helpful for omics researchers who want to study AML from different molecular aspects.
期刊介绍:
The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.