Judith H Sluijter, Agustinus J A J van de Schoot, Abdelmounaim El Yaakoubi, Maartje de Jong, Martine S van der Knaap-van Dongen, Britt Kunnen, Nienke D Sijtsema, Joan J Penninkhof, Kim C de Vries, Steven F Petit, Maarten L P Dirkx
{"title":"Evaluation of artificial intelligence-based autosegmentation for a high-performance cone-beam computed tomography imaging system in the pelvic region.","authors":"Judith H Sluijter, Agustinus J A J van de Schoot, Abdelmounaim El Yaakoubi, Maartje de Jong, Martine S van der Knaap-van Dongen, Britt Kunnen, Nienke D Sijtsema, Joan J Penninkhof, Kim C de Vries, Steven F Petit, Maarten L P Dirkx","doi":"10.1016/j.phro.2024.100687","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>A novel ring-gantry cone-beam computed tomography (CBCT) imaging system shows improved image quality compared to its conventional version, but its effect on autosegmentation is unknown. This study evaluates the impact of this high-performance CBCT on autosegmentation performance, inter-observer variability, contour correction times and delineation confidence, compared to the conventional CBCT.</p><p><strong>Materials and methods: </strong>Twenty prostate cancer patients were enrolled in this prospective clinical study. Per patient, one pair of high-performance CBCT and conventional CBCT scans was included. Three observers manually corrected contours generated by the artificial intelligence (AI) model for prostate, seminal vesicles, bladder, rectum and bowel. Differences between AI-based and manual corrected contours were quantified using Dice Similarity Coefficient (DSC) and 95th percentile of Hausdorff distance (HD95). Autosegmentation performance and interobserver variation were compared using a random effects model; correction times and confidence scores using a paired <i>t</i>-test and Wilcoxon signed-rank test, respectively.</p><p><strong>Results: </strong>Autosegmentation performance showed small, but statistically insignificant differences. Interobserver variability, assessed by the intraclass correlation coefficient, was significantly different across most organs, but these were considered clinically irrelevant (maximum difference = 0.08). Mean contour correction times were similar for both CBCT systems (11:03 versus 11:12 min; p = 0.66). Delineation confidence scores were significantly higher with the high-performance CBCT scans for prostate, seminal vesicles and rectum (4.5 versus 3.5, 4.3 versus 3.5, 4.8 versus 4.3; all p < 0.001).</p><p><strong>Conclusion: </strong>The high-performance CBCT did not (clinically) improve autosegmentation performance, inter-observer variability or contour correction time compared to conventional CBCT. However, it clearly enhanced user confidence in organ delineation for prostate, seminal vesicles and rectum.</p>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"100687"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.phro.2024.100687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: A novel ring-gantry cone-beam computed tomography (CBCT) imaging system shows improved image quality compared to its conventional version, but its effect on autosegmentation is unknown. This study evaluates the impact of this high-performance CBCT on autosegmentation performance, inter-observer variability, contour correction times and delineation confidence, compared to the conventional CBCT.
Materials and methods: Twenty prostate cancer patients were enrolled in this prospective clinical study. Per patient, one pair of high-performance CBCT and conventional CBCT scans was included. Three observers manually corrected contours generated by the artificial intelligence (AI) model for prostate, seminal vesicles, bladder, rectum and bowel. Differences between AI-based and manual corrected contours were quantified using Dice Similarity Coefficient (DSC) and 95th percentile of Hausdorff distance (HD95). Autosegmentation performance and interobserver variation were compared using a random effects model; correction times and confidence scores using a paired t-test and Wilcoxon signed-rank test, respectively.
Results: Autosegmentation performance showed small, but statistically insignificant differences. Interobserver variability, assessed by the intraclass correlation coefficient, was significantly different across most organs, but these were considered clinically irrelevant (maximum difference = 0.08). Mean contour correction times were similar for both CBCT systems (11:03 versus 11:12 min; p = 0.66). Delineation confidence scores were significantly higher with the high-performance CBCT scans for prostate, seminal vesicles and rectum (4.5 versus 3.5, 4.3 versus 3.5, 4.8 versus 4.3; all p < 0.001).
Conclusion: The high-performance CBCT did not (clinically) improve autosegmentation performance, inter-observer variability or contour correction time compared to conventional CBCT. However, it clearly enhanced user confidence in organ delineation for prostate, seminal vesicles and rectum.