Characterization of a novel conditional knockout mouse model to assess efficacy of mRNA therapy in the context of severe ornithine transcarbamylase deficiency.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jenny Zhou, Shi Liang, Ling Yin, Andrea Frassetto, Anne-Renee Graham, Rebecca White, Maria Principe, Madelyn Severson, Tiffany Palmer, Shan Naidu, Eric Jacquinet, Mike Zimmer, Patrick F Finn, Paolo G V Martini
{"title":"Characterization of a novel conditional knockout mouse model to assess efficacy of mRNA therapy in the context of severe ornithine transcarbamylase deficiency.","authors":"Jenny Zhou, Shi Liang, Ling Yin, Andrea Frassetto, Anne-Renee Graham, Rebecca White, Maria Principe, Madelyn Severson, Tiffany Palmer, Shan Naidu, Eric Jacquinet, Mike Zimmer, Patrick F Finn, Paolo G V Martini","doi":"10.1016/j.ymthe.2025.01.010","DOIUrl":null,"url":null,"abstract":"<p><p>Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder, characterized by hyperammonemia and accompanied by a high unmet patient need. mRNA therapies have been shown to be efficacious in hypomorphic Sparse-fur abnormal skin and hair (Spf-ash) mice, a model of late-onset disease. However, studying the efficacy of ornithine transcarbamylase (OTC) mRNA therapy in traditional knockout mice, a model for severe early-onset OTCD, is hampered by the rapid lethality of the model, and poor lipid nanoparticle (LNP) uptake into neonatal mouse liver. We developed a novel tamoxifen-inducible mouse to study the effect of mRNA therapy in the context of complete or near-complete OTC loss in adult animals. Characterization of the model showed that it is highly reproducible, 100% penetrant, and phenocopies hallmarks of human disease, with animals exhibiting decreased body weight, hyperammonemia, and brain edema. Delivery of OTC mRNA increased survival, maintained body weight, delayed the onset of hyperammonemia, and reduced brain edema. Therefore, this model provides a platform to study LNP-mediated mRNA therapies for the treatment of late-onset OTCD.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder, characterized by hyperammonemia and accompanied by a high unmet patient need. mRNA therapies have been shown to be efficacious in hypomorphic Sparse-fur abnormal skin and hair (Spf-ash) mice, a model of late-onset disease. However, studying the efficacy of ornithine transcarbamylase (OTC) mRNA therapy in traditional knockout mice, a model for severe early-onset OTCD, is hampered by the rapid lethality of the model, and poor lipid nanoparticle (LNP) uptake into neonatal mouse liver. We developed a novel tamoxifen-inducible mouse to study the effect of mRNA therapy in the context of complete or near-complete OTC loss in adult animals. Characterization of the model showed that it is highly reproducible, 100% penetrant, and phenocopies hallmarks of human disease, with animals exhibiting decreased body weight, hyperammonemia, and brain edema. Delivery of OTC mRNA increased survival, maintained body weight, delayed the onset of hyperammonemia, and reduced brain edema. Therefore, this model provides a platform to study LNP-mediated mRNA therapies for the treatment of late-onset OTCD.

表征一种新的条件敲除小鼠模型,以评估mRNA治疗在严重鸟氨酸转甲氨基酰基酶缺乏症中的疗效。
鸟氨酸转氨基甲酰基酶缺乏症(OTCD)是最常见的尿素循环障碍,以高氨血症为特征,并伴有高未满足的患者需求。mRNA疗法已被证明对一种迟发性疾病模型——hypomorphic spar- fur abnormal skin and hair (Spf-ash)小鼠有效。然而,研究鸟氨酸转氨基甲酰基酶(OTC) mRNA治疗传统敲除小鼠(严重早发性OTCD模型)的疗效,受到模型快速致死和新生小鼠肝脏脂质纳米颗粒(LNP)摄取不良的阻碍。我们开发了一种新型的他莫昔芬诱导小鼠,以研究mRNA治疗在成年动物完全或接近完全OTC丢失的情况下的效果。模型的表征表明,它具有高度可重复性,100%渗透性和人类疾病的表型特征,动物表现出体重减轻,高氨血症和脑水肿。OTC mRNA的递送增加了存活率,维持了体重,延缓了高氨血症的发生,并减少了脑水肿。因此,该模型为lnp介导的mRNA治疗迟发性OTCD提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信