A new data science trajectory for analysing multiple studies: a case study in physical activity research

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2024-12-11 DOI:10.1016/j.mex.2024.103104
Simone Catharina Maria Wilhelmina Tummers , Arjen Hommersom , Catherine Bolman , Lilian Lechner , Roger Bemelmans
{"title":"A new data science trajectory for analysing multiple studies: a case study in physical activity research","authors":"Simone Catharina Maria Wilhelmina Tummers ,&nbsp;Arjen Hommersom ,&nbsp;Catherine Bolman ,&nbsp;Lilian Lechner ,&nbsp;Roger Bemelmans","doi":"10.1016/j.mex.2024.103104","DOIUrl":null,"url":null,"abstract":"<div><div>The analysis of complex mechanisms within population data, and within sub-populations, can be empowered by combining datasets, for example to gain more understanding of change processes of health-related behaviours. Because of the complexity of this kind of research, it is valuable to provide more specific guidelines for such analyses than given in standard data science methodologies. Thereto, we propose a generic procedure for applied data science research in which the data from multiple studies are included. Furthermore, we describe its steps and associated considerations in detail to guide other researchers. Moreover, we illustrate the application of the described steps in our proposed procedure (presented in the graphical abstract) by means of a case study, i.e., a physical activity (PA) intervention study, in which we provided new insights into PA change processes by analyzing an integrated dataset using Bayesian networks. The strengths of our proposed methodology are subsequently illustrated, by comparing this data science trajectories protocol to the classic CRISP-DM procedure. Finally, some possibilities to extend the methodology are discussed.<ul><li><span>–</span><span><div>A detailed process description for multidisciplinary data science research on multiple studies.</div></span></li><li><span>–</span><span><div>Examples from a case study illustrate methodological key points.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103104"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124005557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of complex mechanisms within population data, and within sub-populations, can be empowered by combining datasets, for example to gain more understanding of change processes of health-related behaviours. Because of the complexity of this kind of research, it is valuable to provide more specific guidelines for such analyses than given in standard data science methodologies. Thereto, we propose a generic procedure for applied data science research in which the data from multiple studies are included. Furthermore, we describe its steps and associated considerations in detail to guide other researchers. Moreover, we illustrate the application of the described steps in our proposed procedure (presented in the graphical abstract) by means of a case study, i.e., a physical activity (PA) intervention study, in which we provided new insights into PA change processes by analyzing an integrated dataset using Bayesian networks. The strengths of our proposed methodology are subsequently illustrated, by comparing this data science trajectories protocol to the classic CRISP-DM procedure. Finally, some possibilities to extend the methodology are discussed.
  • A detailed process description for multidisciplinary data science research on multiple studies.
  • Examples from a case study illustrate methodological key points.

Abstract Image

分析多项研究的新数据科学轨迹:体育活动研究的案例研究。
通过结合数据集,可以加强对人口数据和亚人口内部复杂机制的分析,例如,更好地了解与健康有关的行为的变化过程。由于这类研究的复杂性,为这类分析提供比标准数据科学方法中给出的更具体的指导方针是有价值的。因此,我们提出了一个应用数据科学研究的通用程序,其中包括来自多个研究的数据。此外,我们详细描述了其步骤和相关注意事项,以指导其他研究人员。此外,我们通过一个案例研究,即体育活动(PA)干预研究,说明了我们提出的过程中所描述步骤的应用(以图形摘要的形式呈现),其中我们通过使用贝叶斯网络分析集成数据集,为PA变化过程提供了新的见解。随后,通过将该数据科学轨迹协议与经典的CRISP-DM程序进行比较,说明了我们提出的方法的优势。最后,讨论了扩展该方法的一些可能性。-多学科数据科学研究的详细过程描述。-从案例研究中举例说明方法要点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信