Vibha Gupta, Petur Petursson, Aidin Rawshani, Jan Boren, Truls Ramunddal, Deepak L Bhatt, Elmir Omerovic, Oskar Angerås, Gustav Smith, Naveed Sattar, Erik Andersson, Björn Redfors, Lukas Hilgendorf, Göran Bergström, Carlo Pirazzi, Kristofer Skoglund, Araz Rawshani
{"title":"End-to-end deep-learning model for the detection of coronary artery stenosis on coronary CT images.","authors":"Vibha Gupta, Petur Petursson, Aidin Rawshani, Jan Boren, Truls Ramunddal, Deepak L Bhatt, Elmir Omerovic, Oskar Angerås, Gustav Smith, Naveed Sattar, Erik Andersson, Björn Redfors, Lukas Hilgendorf, Göran Bergström, Carlo Pirazzi, Kristofer Skoglund, Araz Rawshani","doi":"10.1136/openhrt-2024-002998","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ECG-gated coronary CT angiography (CCTA) scans.</p><p><strong>Methods: </strong>From a database of 6293 CCTA scans, we used pre-existing curved multiplanar reformations (CMR) images of the LAD, RCA and LCX arteries to create end-to-end deep-learning models for the detection of moderate or severe stenoses. We preprocessed the images by exploiting domain knowledge and employed a transfer learning approach using EfficientNet, ResNet, DenseNet and Inception-ResNet, with a class-weighted strategy optimised through cross-validation. Heatmaps were generated to indicate critical areas identified by the models, aiding clinicians in understanding the model's decision-making process.</p><p><strong>Results: </strong>Among the 900 CMR cases, 279 involved the LAD artery, 259 the RCA artery and 253 the LCX artery. EfficientNet models outperformed others, with EfficientNetB3 and EfficientNetB0 demonstrating the highest accuracy for LAD, EfficientNetB2 for RCA and EfficientNetB0 for LCX. The area under the curve for receiver operating characteristic (AUROC) reached 0.95 for moderate and 0.94 for severe stenosis in the LAD. For the RCA, the AUROC was 0.92 for both moderate and severe stenosis detection. The LCX achieved an AUROC of 0.88 for the detection of moderate stenoses, though the calibration curve exhibited significant overestimation. Calibration curves matched probabilities for the LAD but showed discrepancies for the RCA. Heatmap visualisations confirmed the models' precision in delineating stenotic lesions. Decision curve analysis and net reclassification index assessments reinforced the efficacy of EfficientNet models, confirming their superior diagnostic capabilities.</p><p><strong>Conclusion: </strong>Our end-to-end deep-learning model demonstrates, for the LAD artery, excellent discriminatory ability and calibration during internal validation, despite a small dataset used to train the network. The model reliably produces precise, highly interpretable images.</p>","PeriodicalId":19505,"journal":{"name":"Open Heart","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Heart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/openhrt-2024-002998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ECG-gated coronary CT angiography (CCTA) scans.
Methods: From a database of 6293 CCTA scans, we used pre-existing curved multiplanar reformations (CMR) images of the LAD, RCA and LCX arteries to create end-to-end deep-learning models for the detection of moderate or severe stenoses. We preprocessed the images by exploiting domain knowledge and employed a transfer learning approach using EfficientNet, ResNet, DenseNet and Inception-ResNet, with a class-weighted strategy optimised through cross-validation. Heatmaps were generated to indicate critical areas identified by the models, aiding clinicians in understanding the model's decision-making process.
Results: Among the 900 CMR cases, 279 involved the LAD artery, 259 the RCA artery and 253 the LCX artery. EfficientNet models outperformed others, with EfficientNetB3 and EfficientNetB0 demonstrating the highest accuracy for LAD, EfficientNetB2 for RCA and EfficientNetB0 for LCX. The area under the curve for receiver operating characteristic (AUROC) reached 0.95 for moderate and 0.94 for severe stenosis in the LAD. For the RCA, the AUROC was 0.92 for both moderate and severe stenosis detection. The LCX achieved an AUROC of 0.88 for the detection of moderate stenoses, though the calibration curve exhibited significant overestimation. Calibration curves matched probabilities for the LAD but showed discrepancies for the RCA. Heatmap visualisations confirmed the models' precision in delineating stenotic lesions. Decision curve analysis and net reclassification index assessments reinforced the efficacy of EfficientNet models, confirming their superior diagnostic capabilities.
Conclusion: Our end-to-end deep-learning model demonstrates, for the LAD artery, excellent discriminatory ability and calibration during internal validation, despite a small dataset used to train the network. The model reliably produces precise, highly interpretable images.
期刊介绍:
Open Heart is an online-only, open access cardiology journal that aims to be “open” in many ways: open access (free access for all readers), open peer review (unblinded peer review) and open data (data sharing is encouraged). The goal is to ensure maximum transparency and maximum impact on research progress and patient care. The journal is dedicated to publishing high quality, peer reviewed medical research in all disciplines and therapeutic areas of cardiovascular medicine. Research is published across all study phases and designs, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Opinionated discussions on controversial topics are welcomed. Open Heart aims to operate a fast submission and review process with continuous publication online, to ensure timely, up-to-date research is available worldwide. The journal adheres to a rigorous and transparent peer review process, and all articles go through a statistical assessment to ensure robustness of the analyses. Open Heart is an official journal of the British Cardiovascular Society.