Nassim Nicholas Taleb , Pierre Zalloua , Khaled Elbassioni , Haralampos Hatzikirou , Andreas Henschel , Daniel E. Platt
{"title":"Informational rescaling of PCA maps with application to genetic distance","authors":"Nassim Nicholas Taleb , Pierre Zalloua , Khaled Elbassioni , Haralampos Hatzikirou , Andreas Henschel , Daniel E. Platt","doi":"10.1016/j.csbj.2024.11.042","DOIUrl":null,"url":null,"abstract":"<div><div>Principal Component Analysis (PCA) is a powerful multivariate tool allowing the projection of data in low-dimensional representations. Nevertheless, datapoint distances on these low-dimensional projections are challenging to interpret. Here, we propose a computationally simple heuristic to transform a map based on standard PCA (when the variables are asymptotically Gaussian) into an entropy-based map where distances are based on mutual information (MI). Moreover, we show that in certain instances our proposed scaled PCA can improve cluster identification. Rescaling principal component-based distances using MI results in a representation of relative statistical associations when, as in genetics, it is applied on bit measurements between individuals' genomic mutual information. This entropy-rescaled PCA, while preserving order relationships (along a dimension), quantifies relative distances into information units, such as “bits”. We illustrate the effect of this rescaling using genomics data derived from world populations and describe how the interpretation of results is impacted.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 48-56"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004136","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Principal Component Analysis (PCA) is a powerful multivariate tool allowing the projection of data in low-dimensional representations. Nevertheless, datapoint distances on these low-dimensional projections are challenging to interpret. Here, we propose a computationally simple heuristic to transform a map based on standard PCA (when the variables are asymptotically Gaussian) into an entropy-based map where distances are based on mutual information (MI). Moreover, we show that in certain instances our proposed scaled PCA can improve cluster identification. Rescaling principal component-based distances using MI results in a representation of relative statistical associations when, as in genetics, it is applied on bit measurements between individuals' genomic mutual information. This entropy-rescaled PCA, while preserving order relationships (along a dimension), quantifies relative distances into information units, such as “bits”. We illustrate the effect of this rescaling using genomics data derived from world populations and describe how the interpretation of results is impacted.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology