Deep Learning for Classification of Inflammatory Bowel Disease Activity in Whole Slide Images of Colonic Histopathology.

IF 4.7 2区 医学 Q1 PATHOLOGY
Amit Das, Tanmay Shukla, Naofumi Tomita, Ryland Richards, Laura Vidis, Bing Ren, Saeed Hassanpour
{"title":"Deep Learning for Classification of Inflammatory Bowel Disease Activity in Whole Slide Images of Colonic Histopathology.","authors":"Amit Das, Tanmay Shukla, Naofumi Tomita, Ryland Richards, Laura Vidis, Bing Ren, Saeed Hassanpour","doi":"10.1016/j.ajpath.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Grading activity of inflammatory bowel disease (IBD) using standardized histopathological scoring systems remains challenging due to limited availability of pathologists with IBD expertise and inter-observer variability. In this study, a deep learning model was developed to classify activity grades in hematoxylin and eosin-stained whole slide images (WSIs) from patients with IBD, offering a robust approach for general pathologists. This study utilized 2,077 WSIs from 636 patients who visited Dartmouth-Hitchcock Medical Center in 2018 and 2019, scanned at 40× magnification (0.25 μm/pixel). Board-certified gastrointestinal pathologists categorized the WSIs into four activity classes: inactive, mildly active, moderately active, and severely active. A transformer-based model was developed and validated using five-fold cross-validation to classify IBD activity. Using HoVerNet, neutrophil distribution across activity grades was examined. Attention maps from the model highlighted areas contributing to its prediction. The model classified IBD activity with weighted averages of 0.871 [95% Confidence Interval (CI): 0.860-0.883] for the area under the curve, 0.695 [95% CI: 0.674-0.715] for precision, 0.697 [95% CI: 0.678-0.716] for recall, and 0.695 [95% CI: 0.674-0.714] for F1-score. Neutrophil distribution was significantly different across activity classes. Qualitative evaluation of attention maps by a gastrointestinal pathologist suggested their potential for improved interpretability. The model demonstrates robust diagnostic performance and could enhance consistency and efficiency in IBD activity assessment.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.12.010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grading activity of inflammatory bowel disease (IBD) using standardized histopathological scoring systems remains challenging due to limited availability of pathologists with IBD expertise and inter-observer variability. In this study, a deep learning model was developed to classify activity grades in hematoxylin and eosin-stained whole slide images (WSIs) from patients with IBD, offering a robust approach for general pathologists. This study utilized 2,077 WSIs from 636 patients who visited Dartmouth-Hitchcock Medical Center in 2018 and 2019, scanned at 40× magnification (0.25 μm/pixel). Board-certified gastrointestinal pathologists categorized the WSIs into four activity classes: inactive, mildly active, moderately active, and severely active. A transformer-based model was developed and validated using five-fold cross-validation to classify IBD activity. Using HoVerNet, neutrophil distribution across activity grades was examined. Attention maps from the model highlighted areas contributing to its prediction. The model classified IBD activity with weighted averages of 0.871 [95% Confidence Interval (CI): 0.860-0.883] for the area under the curve, 0.695 [95% CI: 0.674-0.715] for precision, 0.697 [95% CI: 0.678-0.716] for recall, and 0.695 [95% CI: 0.674-0.714] for F1-score. Neutrophil distribution was significantly different across activity classes. Qualitative evaluation of attention maps by a gastrointestinal pathologist suggested their potential for improved interpretability. The model demonstrates robust diagnostic performance and could enhance consistency and efficiency in IBD activity assessment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信