UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Zixin Chen, Chengming Ji, Wenwen Xu, Jianfeng Gao, Ji Huang, Huanliang Xu, Guoliang Qian, Junxian Huang
{"title":"UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.","authors":"Zixin Chen, Chengming Ji, Wenwen Xu, Jianfeng Gao, Ji Huang, Huanliang Xu, Guoliang Qian, Junxian Huang","doi":"10.1186/s12859-025-06033-3","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models. Specifically, we use a feature vector with 2924 values inferred by two deep learning models, UniRep and ProtT5, to demonstrate that such inferred information of peptides suffice for the task, with the help of our proposed deep neural network model composed of fully connected layers and transformer encoders for predicting the antibacterial activity of peptides. Evaluation results demonstrate superior performance of our proposed model on both balanced benchmark datasets and imbalanced test datasets compared with existing studies. Subsequently, we analyze the relations among peptide sequences, manually extracted features, and automatically inferred information by deep learning models, leading to observations that the inferred information is more comprehensive and non-redundant for the task of predicting AMPs. Moreover, this approach alleviates the impact of the scarcity of positive data and demonstrates great potential in future research and applications.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"10"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06033-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models. Specifically, we use a feature vector with 2924 values inferred by two deep learning models, UniRep and ProtT5, to demonstrate that such inferred information of peptides suffice for the task, with the help of our proposed deep neural network model composed of fully connected layers and transformer encoders for predicting the antibacterial activity of peptides. Evaluation results demonstrate superior performance of our proposed model on both balanced benchmark datasets and imbalanced test datasets compared with existing studies. Subsequently, we analyze the relations among peptide sequences, manually extracted features, and automatically inferred information by deep learning models, leading to observations that the inferred information is more comprehensive and non-redundant for the task of predicting AMPs. Moreover, this approach alleviates the impact of the scarcity of positive data and demonstrates great potential in future research and applications.

UniAMP:利用深度神经网络与肽推断信息增强AMP预测。
由于全球范围内抗生素在医学和农业中的滥用日益严重,抗菌肽(AMPs)已被广泛认为是对抗微生物耐药性的一种有前途的解决方案。在这项研究中,我们提出了UniAMP,一个发现amp的系统预测框架。我们观察到,在现有的各种研究中,从肽信息(如序列、组成和结构)构建的特征向量可以被深度学习模型推断的信息增强甚至取代。具体来说,我们使用由两个深度学习模型UniRep和ProtT5推断的2924个值的特征向量来证明这些推断的肽信息足以完成任务,并利用我们提出的由完全连接层和变压器编码器组成的深度神经网络模型来预测肽的抗菌活性。评估结果表明,与现有研究相比,我们提出的模型在平衡基准数据集和不平衡测试数据集上都具有优越的性能。随后,我们分析了肽序列之间的关系,人工提取特征,并通过深度学习模型自动推断信息,结果表明,推断信息对于预测amp的任务更加全面和无冗余。此外,该方法缓解了实证数据稀缺的影响,在未来的研究和应用中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信