Zixin Chen, Chengming Ji, Wenwen Xu, Jianfeng Gao, Ji Huang, Huanliang Xu, Guoliang Qian, Junxian Huang
{"title":"UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.","authors":"Zixin Chen, Chengming Ji, Wenwen Xu, Jianfeng Gao, Ji Huang, Huanliang Xu, Guoliang Qian, Junxian Huang","doi":"10.1186/s12859-025-06033-3","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models. Specifically, we use a feature vector with 2924 values inferred by two deep learning models, UniRep and ProtT5, to demonstrate that such inferred information of peptides suffice for the task, with the help of our proposed deep neural network model composed of fully connected layers and transformer encoders for predicting the antibacterial activity of peptides. Evaluation results demonstrate superior performance of our proposed model on both balanced benchmark datasets and imbalanced test datasets compared with existing studies. Subsequently, we analyze the relations among peptide sequences, manually extracted features, and automatically inferred information by deep learning models, leading to observations that the inferred information is more comprehensive and non-redundant for the task of predicting AMPs. Moreover, this approach alleviates the impact of the scarcity of positive data and demonstrates great potential in future research and applications.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"10"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06033-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models. Specifically, we use a feature vector with 2924 values inferred by two deep learning models, UniRep and ProtT5, to demonstrate that such inferred information of peptides suffice for the task, with the help of our proposed deep neural network model composed of fully connected layers and transformer encoders for predicting the antibacterial activity of peptides. Evaluation results demonstrate superior performance of our proposed model on both balanced benchmark datasets and imbalanced test datasets compared with existing studies. Subsequently, we analyze the relations among peptide sequences, manually extracted features, and automatically inferred information by deep learning models, leading to observations that the inferred information is more comprehensive and non-redundant for the task of predicting AMPs. Moreover, this approach alleviates the impact of the scarcity of positive data and demonstrates great potential in future research and applications.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.