Sonu Khanka, Sumit K Rastogi, Krishna Bhan Singh, Kriti Sharma, Shahid Parwez, Mohammad Imran Siddiqi, Arun K Sinha, Ravindra Kumar, Divya Singh
{"title":"Pym-18a, a novel pyrimidine derivative ameliorates glucocorticoid induced osteoblast apoptosis and promotes osteogenesis via autophagy and PINK 1/Parkin mediated mitophagy induction.","authors":"Sonu Khanka, Sumit K Rastogi, Krishna Bhan Singh, Kriti Sharma, Shahid Parwez, Mohammad Imran Siddiqi, Arun K Sinha, Ravindra Kumar, Divya Singh","doi":"10.1016/j.bcp.2025.116751","DOIUrl":null,"url":null,"abstract":"<p><p>Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis, marked by reduced bone density and impaired osteoblast function. Current treatments have serious side effects, highlighting the need for new drug candidates. Pyrimidine derivatives have been noted for their potential in suppressing osteoclastogenesis, but their effects on osteogenesis and GIOP remain underexplored. Our recent study identified a novel pyrimidine derivative, Pym-18a, which enhances osteoblast functions. In this study, Pym-18a was found to mitigate the detrimental effects of Dexamethasone (Dex) in osteoblast cells and in GIOP in Balb/C mice. Pretreatment with Pym-18a followed by Dex (100 µM) for 24 h restored osteoblast alkaline phosphatase activity and viability. Pym-18a reduced Dex-induced apoptosis and reactive oxygen species (ROS) generation at cellular and mitochondrial levels and preserved mitochondrial membrane potential. Dex impaired autophagy and mitophagy, but Pym-18a pretreatment increased expression of autophagy markers (LC3II) and mitophagy markers (PINK1, Parkin, TOM20) while decreasing P62 expression. The osteogenic effects of Pym-18a were diminished in the presence of 3-MA (an autophagy inhibitor). In silico studies showed mTOR inhibition by Pym-18a, corroborated by its suppression of Dex-induced mTOR activation. In vivo, Pym-18a (10 mg/kg) significantly improved bone microarchitecture, trabecular connectivity, and strength, and corrected P1NP and CTX levels altered by Dex. Pym-18a also promoted autophagy, mitophagy, and suppressed mTOR activation in GIOP mice. Overall, Pym-18a mitigates detrimental effect of Dex by modulating autophagy and PINK/Parkin-mediated mitophagy through mTOR inhibition, suggesting it as a potential novel therapeutic option for GIOP.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116751"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2025.116751","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis, marked by reduced bone density and impaired osteoblast function. Current treatments have serious side effects, highlighting the need for new drug candidates. Pyrimidine derivatives have been noted for their potential in suppressing osteoclastogenesis, but their effects on osteogenesis and GIOP remain underexplored. Our recent study identified a novel pyrimidine derivative, Pym-18a, which enhances osteoblast functions. In this study, Pym-18a was found to mitigate the detrimental effects of Dexamethasone (Dex) in osteoblast cells and in GIOP in Balb/C mice. Pretreatment with Pym-18a followed by Dex (100 µM) for 24 h restored osteoblast alkaline phosphatase activity and viability. Pym-18a reduced Dex-induced apoptosis and reactive oxygen species (ROS) generation at cellular and mitochondrial levels and preserved mitochondrial membrane potential. Dex impaired autophagy and mitophagy, but Pym-18a pretreatment increased expression of autophagy markers (LC3II) and mitophagy markers (PINK1, Parkin, TOM20) while decreasing P62 expression. The osteogenic effects of Pym-18a were diminished in the presence of 3-MA (an autophagy inhibitor). In silico studies showed mTOR inhibition by Pym-18a, corroborated by its suppression of Dex-induced mTOR activation. In vivo, Pym-18a (10 mg/kg) significantly improved bone microarchitecture, trabecular connectivity, and strength, and corrected P1NP and CTX levels altered by Dex. Pym-18a also promoted autophagy, mitophagy, and suppressed mTOR activation in GIOP mice. Overall, Pym-18a mitigates detrimental effect of Dex by modulating autophagy and PINK/Parkin-mediated mitophagy through mTOR inhibition, suggesting it as a potential novel therapeutic option for GIOP.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.