Yi Wang, Bao-Lan Wang, Li-Qun Zhou, Yu-Feng Wan, Yu-Long Zheng, Li-Yang Zhou, Ran Fu, Chun-Hua Ling
{"title":"NRP1 overexpression potentially enhances osimertinib resistance in NSCLC via activation of the PI3K/AKT signaling pathway.","authors":"Yi Wang, Bao-Lan Wang, Li-Qun Zhou, Yu-Feng Wan, Yu-Long Zheng, Li-Yang Zhou, Ran Fu, Chun-Hua Ling","doi":"10.62347/RLVZ6860","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the main cause of mortality in lung cancer. This study aimed to investigate the roles of neuropilin 1 (NRP1) in non-small cell lung cancer (NSCLC). NRP1 expression was assessed in tumor tissues from patients with osimertinib-resistant (OR) NSCLC and osimertinib-responsive NSCLC as well as in patients with paracancerous NSCLC tissues who did not undergo radiotherapy or chemotherapy. <i>In vitro</i> experiments were conducted using five cell lines: BEAS-2B, HCC827, and PC9 cells, and the constructed OR cell lines, HCC827-OR and PC9-OR. HCC827-OR cells showing significant differences in osimertinib IC<sub>50</sub> were selected for further study. After investigating the effects of altering NRP1 expression on cell sensitivity to osimertinib, NRP1 expression was inhibited to further investigate changes in cell viability, proliferation, migration, invasion, and apoptosis in OR cells. Additionally, bioinformatics techniques were used to detect targets (Integrin β3) and signaling pathways (PI3K/AKT) downstream of NRP1; subsequent cell experiments verified their interactivity. Finally, an orthotopic mouse tumor model was constructed using HCC827-OR cells treated with a PI3K/AKT signaling pathway activator (740Y-P), allowing exploration of the role played by the PI3K/AKT signaling pathway via NRP1 regulation on NSCLC resistance both <i>in vivo</i> and <i>in vitro</i>. Results showed that NRP1 expression was significantly increased in the cells of patients with NSCLC-OR, and increased NRP1 expression reduced HCC827 cell sensitivity to osimertinib. Both <i>in vitro</i> and <i>in vivo</i> experiments showed that NRP1 deficiency mediated by NRP1 inhibitors inhibited HCC827-OR cell proliferation, migration, and invasion, promoted tumor cell apoptosis, and enhanced osimertinib efficacy. In contrast, 740Y-P partially inhibited the effects of NRP1 inhibitors combined with osimertinib on the PI3K/AKT signaling pathway and on tumor growth <i>in vivo</i> and <i>in vitro</i>. Cellular experimental results showed that NRP1 positively regulates the Integrin β3 expression and activation of the PI3K/AKT signaling pathway. Bioinformatics analysis showed that both NRP1 and Integrin β3 may jointly participate in regulating the PI3K/AKT signaling pathway. In conclusion, our findings suggest that elevated NRP1 expression in NSCLC tumor tissues may promote NSCLC resistance to osimertinib by activating the PI3K/AKT signaling pathway, and integrin β3 potentially being involved in this process. These insights may provide a novel strategy for combination therapy for OR NSCLC.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 12","pages":"5680-5696"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/RLVZ6860","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the main cause of mortality in lung cancer. This study aimed to investigate the roles of neuropilin 1 (NRP1) in non-small cell lung cancer (NSCLC). NRP1 expression was assessed in tumor tissues from patients with osimertinib-resistant (OR) NSCLC and osimertinib-responsive NSCLC as well as in patients with paracancerous NSCLC tissues who did not undergo radiotherapy or chemotherapy. In vitro experiments were conducted using five cell lines: BEAS-2B, HCC827, and PC9 cells, and the constructed OR cell lines, HCC827-OR and PC9-OR. HCC827-OR cells showing significant differences in osimertinib IC50 were selected for further study. After investigating the effects of altering NRP1 expression on cell sensitivity to osimertinib, NRP1 expression was inhibited to further investigate changes in cell viability, proliferation, migration, invasion, and apoptosis in OR cells. Additionally, bioinformatics techniques were used to detect targets (Integrin β3) and signaling pathways (PI3K/AKT) downstream of NRP1; subsequent cell experiments verified their interactivity. Finally, an orthotopic mouse tumor model was constructed using HCC827-OR cells treated with a PI3K/AKT signaling pathway activator (740Y-P), allowing exploration of the role played by the PI3K/AKT signaling pathway via NRP1 regulation on NSCLC resistance both in vivo and in vitro. Results showed that NRP1 expression was significantly increased in the cells of patients with NSCLC-OR, and increased NRP1 expression reduced HCC827 cell sensitivity to osimertinib. Both in vitro and in vivo experiments showed that NRP1 deficiency mediated by NRP1 inhibitors inhibited HCC827-OR cell proliferation, migration, and invasion, promoted tumor cell apoptosis, and enhanced osimertinib efficacy. In contrast, 740Y-P partially inhibited the effects of NRP1 inhibitors combined with osimertinib on the PI3K/AKT signaling pathway and on tumor growth in vivo and in vitro. Cellular experimental results showed that NRP1 positively regulates the Integrin β3 expression and activation of the PI3K/AKT signaling pathway. Bioinformatics analysis showed that both NRP1 and Integrin β3 may jointly participate in regulating the PI3K/AKT signaling pathway. In conclusion, our findings suggest that elevated NRP1 expression in NSCLC tumor tissues may promote NSCLC resistance to osimertinib by activating the PI3K/AKT signaling pathway, and integrin β3 potentially being involved in this process. These insights may provide a novel strategy for combination therapy for OR NSCLC.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.