Liquid-Vapor Phase Equilibrium in Molten Aluminum Chloride (AlCl3) Enabled by Machine Learning Interatomic Potentials.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Rajni Chahal, Luke D Gibson, Santanu Roy, Vyacheslav S Bryantsev
{"title":"Liquid-Vapor Phase Equilibrium in Molten Aluminum Chloride (AlCl<sub>3</sub>) Enabled by Machine Learning Interatomic Potentials.","authors":"Rajni Chahal, Luke D Gibson, Santanu Roy, Vyacheslav S Bryantsev","doi":"10.1021/acs.jpcb.4c06450","DOIUrl":null,"url":null,"abstract":"<p><p>Molten salts are promising candidates in numerous clean energy applications, where knowledge of thermophysical properties and vapor pressure across their operating temperature ranges is critical for safe operations. Due to challenges in evaluating these properties using experimental methods, fast and scalable molecular simulations are essential to complement the experimental data. In this study, we developed machine learning interatomic potentials (MLIP) to study the AlCl<sub>3</sub> molten salt across varied thermodynamic conditions (<i>T</i> = 473-613 K and <i>P</i> = 2.7-23.4 bar), which allowed us to predict temperature-surface tension correlations and liquid-vapor phase diagram from direct simulations of two-phase coexistence in this molten salt. Two MLIP architectures, a Kernel-based potential and neural network interatomic potential (NNIP), were considered to benchmark their performance for AlCl<sub>3</sub> molten salt using experimental structure and density values. The NNIP potential employed in two-phase equilibrium simulations yields the critical temperature and critical density of AlCl<sub>3</sub> that are within 10 K (∼3%) and 0.03 g/cm<sup>3</sup> (∼7%) of the reported experimental values. An accurate correlation between temperature and viscosities is obtained as well. In doing so, we report that the inclusion of low-density configurations in their training is critical to more accurately represent the AlCl<sub>3</sub> system across a wide phase-space. The MLIP trained using PBE-D3 functional in the ab initio molecular dynamics (AIMD) simulations (120 atoms) also showed close agreement with experimentally determined molten salt structure comprising Al<sub>2</sub>Cl<sub>6</sub> dimers, as validated using Raman spectra and neutron structure factor. The PBE-D3 as well as its trained MLIP showed better liquid density and temperature correlation for AlCl<sub>3</sub> system when compared to several other density functionals explored in this work. Overall, the demonstrated approach to predict temperature correlations for liquid and vapor densities in this study can be employed to screen nuclear reactors-relevant compositions, helping to mitigate safety concerns.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06450","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molten salts are promising candidates in numerous clean energy applications, where knowledge of thermophysical properties and vapor pressure across their operating temperature ranges is critical for safe operations. Due to challenges in evaluating these properties using experimental methods, fast and scalable molecular simulations are essential to complement the experimental data. In this study, we developed machine learning interatomic potentials (MLIP) to study the AlCl3 molten salt across varied thermodynamic conditions (T = 473-613 K and P = 2.7-23.4 bar), which allowed us to predict temperature-surface tension correlations and liquid-vapor phase diagram from direct simulations of two-phase coexistence in this molten salt. Two MLIP architectures, a Kernel-based potential and neural network interatomic potential (NNIP), were considered to benchmark their performance for AlCl3 molten salt using experimental structure and density values. The NNIP potential employed in two-phase equilibrium simulations yields the critical temperature and critical density of AlCl3 that are within 10 K (∼3%) and 0.03 g/cm3 (∼7%) of the reported experimental values. An accurate correlation between temperature and viscosities is obtained as well. In doing so, we report that the inclusion of low-density configurations in their training is critical to more accurately represent the AlCl3 system across a wide phase-space. The MLIP trained using PBE-D3 functional in the ab initio molecular dynamics (AIMD) simulations (120 atoms) also showed close agreement with experimentally determined molten salt structure comprising Al2Cl6 dimers, as validated using Raman spectra and neutron structure factor. The PBE-D3 as well as its trained MLIP showed better liquid density and temperature correlation for AlCl3 system when compared to several other density functionals explored in this work. Overall, the demonstrated approach to predict temperature correlations for liquid and vapor densities in this study can be employed to screen nuclear reactors-relevant compositions, helping to mitigate safety concerns.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信