Exploring the Impact of Minor Water Content on Polymer Electrolytes with Molecular Dynamics.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Aysha Siddika Asha, Mubeen Jamal, Simon Gravelle, Maricris L Mayes, Caiwei Shen
{"title":"Exploring the Impact of Minor Water Content on Polymer Electrolytes with Molecular Dynamics.","authors":"Aysha Siddika Asha, Mubeen Jamal, Simon Gravelle, Maricris L Mayes, Caiwei Shen","doi":"10.1021/acs.jpcb.4c04984","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-state polymer electrolytes (SPEs) are increasingly favored over liquid electrolytes for emerging energy storage devices due to their safety features, enhanced stability, and multifunctionality. Minor solvents (such as water) are often introduced unintentionally or intentionally into SPEs. Although it can significantly affect SPEs' electrochemical and mechanical properties, the fundamental role of such solvent content has rarely been studied. Here, we investigate the effects of minor water content on two representative SPEs through molecular dynamics simulations. Focusing on SPEs composed of different base polymers, namely, poly(ethylene oxide) (PEO) and poly(lactic acid) (PLA), and the same salt, lithium perchlorate (LiClO<sub>4</sub>), our simulations reveal that slight hydration facilitates an increase in ionic conductivity while preserving the mechanical integrity of the SPEs. Notably, these water contents appear to affect ionic conductivity more effectively in certain systems than others, which is attributed to the unique interactions among ions, water, and the polymer matrix. Moreover, small amounts of water can maintain the stiffness of SPEs rather than reducing it. Such results suggest a facile approach to developing SPEs with balanced ionic conductivity and mechanical properties, suitable for a range of energy storage applications.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04984","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state polymer electrolytes (SPEs) are increasingly favored over liquid electrolytes for emerging energy storage devices due to their safety features, enhanced stability, and multifunctionality. Minor solvents (such as water) are often introduced unintentionally or intentionally into SPEs. Although it can significantly affect SPEs' electrochemical and mechanical properties, the fundamental role of such solvent content has rarely been studied. Here, we investigate the effects of minor water content on two representative SPEs through molecular dynamics simulations. Focusing on SPEs composed of different base polymers, namely, poly(ethylene oxide) (PEO) and poly(lactic acid) (PLA), and the same salt, lithium perchlorate (LiClO4), our simulations reveal that slight hydration facilitates an increase in ionic conductivity while preserving the mechanical integrity of the SPEs. Notably, these water contents appear to affect ionic conductivity more effectively in certain systems than others, which is attributed to the unique interactions among ions, water, and the polymer matrix. Moreover, small amounts of water can maintain the stiffness of SPEs rather than reducing it. Such results suggest a facile approach to developing SPEs with balanced ionic conductivity and mechanical properties, suitable for a range of energy storage applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信