Ai-Qun Pan, Xichun Liu, Hui Han, Shu-Qin Gao, Ying-Wu Lin
{"title":"Disruption of a potential disulfide bond of Cys65-Cys141 on the structure and stability of globin X from zebrafish","authors":"Ai-Qun Pan, Xichun Liu, Hui Han, Shu-Qin Gao, Ying-Wu Lin","doi":"10.1039/d4cp04253k","DOIUrl":null,"url":null,"abstract":"Globin X is a newly discovered member of the globin family, where its structure and function are not fully understood. In this study, we performed protein modelling studies using Alphafold3 and molecular dynamics simulations, which suggested that the protein adopts a typical globin fold, with the formation of a potential disulfide bond of Cys65 and Cys141. To elucidate the role of this unique disulfide in protein structure and stability, we constructed a double mutant of C65S/C141S by mutating the two cysteine residues to serine. As suggested by protein mass, ultraviolet-visible (UV-Vis) and circular dichroism (CD) spectroscopy analyses, the potential disulfide bond has minimal effect on the overall protein structure, but its absence reduces the protein stability. Electron paramagnetic resonance (EPR) analysis also revealed an increase in the proportion of high-spin state heme iron, which accelerates the rate of heme degradation in reaction with H2O2. This study highlights the critical role of the Cys65-Cys141 in maintaining the stability of globin X and the bis-His heme coordination state, providing insights into the structure-function relationship of the newly discovered globin.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04253k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Globin X is a newly discovered member of the globin family, where its structure and function are not fully understood. In this study, we performed protein modelling studies using Alphafold3 and molecular dynamics simulations, which suggested that the protein adopts a typical globin fold, with the formation of a potential disulfide bond of Cys65 and Cys141. To elucidate the role of this unique disulfide in protein structure and stability, we constructed a double mutant of C65S/C141S by mutating the two cysteine residues to serine. As suggested by protein mass, ultraviolet-visible (UV-Vis) and circular dichroism (CD) spectroscopy analyses, the potential disulfide bond has minimal effect on the overall protein structure, but its absence reduces the protein stability. Electron paramagnetic resonance (EPR) analysis also revealed an increase in the proportion of high-spin state heme iron, which accelerates the rate of heme degradation in reaction with H2O2. This study highlights the critical role of the Cys65-Cys141 in maintaining the stability of globin X and the bis-His heme coordination state, providing insights into the structure-function relationship of the newly discovered globin.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.