Viologen-Radical-Driven Hydrogen Evolution from Water Catalyzed by Co-NHC Catalysts: Radical Scavenging by Nitrate and Volmer-Heyrovsky-like CPET Pathway

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kosei Yamauchi, Ken Kawano, Koichi Yatsuzuka, Kaori Kawamura, Masanori Kan, Ken Sakai
{"title":"Viologen-Radical-Driven Hydrogen Evolution from Water Catalyzed by Co-NHC Catalysts: Radical Scavenging by Nitrate and Volmer-Heyrovsky-like CPET Pathway","authors":"Kosei Yamauchi, Ken Kawano, Koichi Yatsuzuka, Kaori Kawamura, Masanori Kan, Ken Sakai","doi":"10.1021/jacs.4c10246","DOIUrl":null,"url":null,"abstract":"The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors (<b>Co-NHC1</b> and <b>Co-NHC2</b>, where <b>Co-NHC2</b> has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)<sub>3</sub>]<sup>2+</sup> (bpy = 2,2′-bipyridine), and MV<sup>2+</sup> (MV<sup>2+</sup> = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12–13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents. The catalyst degradation is shown to proceed during the photocatalysis, leading to afford [Co(edta)]<sup>−</sup> (EDTA = H<sub>4</sub>edta) as a dead-end species. The lack of any heterogeneous species was evidenced by DLS (dynamic light scattering). It was also found that nitrate involved as a counteranion in the photocatalysis components substantially inhibits the photocatalytic HER, giving rise to a large diminishment in TON from 12.7 to 7.2. The Griess test was used to confirm that NO<sub>3</sub><sup>–</sup> serves as a scavenger deactivating the reduced form of MV<sup>2+</sup> (i.e., MV<sup>+</sup>·). The detailed spectroscopic study reveals that the radical dimer (MV<sup>+</sup>·)<sub>2</sub> plays a key role in promoting the one-step two-electron process: (MV<sup>+</sup>·)<sub>2</sub> + NO<sub>3</sub><sup>–</sup> + 2H<sup>+</sup> → 2MV<sup>2+</sup> + NO<sub>2</sub><sup>–</sup> + H<sub>2</sub>O. Experimental and DFT results also reveal that a unique double CPET (concerted proton–electron transfer) pathway is taken to evolve H<sub>2</sub> by the Co-NHC catalysts with substantially minimized reorganization energies: Co(II)-NHC <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;CPET&lt;/mi&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.878em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.707em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(0.741em, 1001.71em, 2.276em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.707em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.71em, 4.094em, -999.997em); top: -3.974em; left: 0.003em;\"><span style=\"\"><span style=\"display: inline-block; position: relative; width: 1.707em; height: 0px;\"><span style=\"position: absolute; font-family: STIXMathJax_Main; top: -3.974em; left: -0.054em;\">−<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; font-family: STIXMathJax_Main; top: -3.974em; left: 0.855em;\">→<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Main; position: absolute; top: -3.974em; left: 0.401em;\">−<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.241em, 1001.71em, 4.151em, -999.997em); top: -4.656em; left: 0em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">CPET</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: 0em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mo>→</mo><mrow><mi mathvariant=\"normal\">CPET</mi></mrow></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mo>→</mo><mrow><mi mathvariant=\"normal\">CPET</mi></mrow></mover></math></script> Co(III)(H)-NHC <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;CPET&lt;/mi&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.878em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.707em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(0.741em, 1001.71em, 2.276em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.707em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.71em, 4.094em, -999.997em); top: -3.974em; left: 0.003em;\"><span style=\"\"><span style=\"display: inline-block; position: relative; width: 1.707em; height: 0px;\"><span style=\"position: absolute; font-family: STIXMathJax_Main; top: -3.974em; left: -0.054em;\">−<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; font-family: STIXMathJax_Main; top: -3.974em; left: 0.855em;\">→<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Main; position: absolute; top: -3.974em; left: 0.401em;\">−<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.241em, 1001.71em, 4.151em, -999.997em); top: -4.656em; left: 0em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">CPET</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: 0em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mo>→</mo><mrow><mi mathvariant=\"normal\">CPET</mi></mrow></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mo>→</mo><mrow><mi mathvariant=\"normal\">CPET</mi></mrow></mover></math></script> Co(II)-NHC + H<sub>2</sub>. This pathway can be viewed as related to the so-called Volmer-Heyrovsky mechanism adopted by some metals and is quite unique to the Co-NHC catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"21 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors (Co-NHC1 and Co-NHC2, where Co-NHC2 has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine), and MV2+ (MV2+ = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12–13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents. The catalyst degradation is shown to proceed during the photocatalysis, leading to afford [Co(edta)] (EDTA = H4edta) as a dead-end species. The lack of any heterogeneous species was evidenced by DLS (dynamic light scattering). It was also found that nitrate involved as a counteranion in the photocatalysis components substantially inhibits the photocatalytic HER, giving rise to a large diminishment in TON from 12.7 to 7.2. The Griess test was used to confirm that NO3 serves as a scavenger deactivating the reduced form of MV2+ (i.e., MV+·). The detailed spectroscopic study reveals that the radical dimer (MV+·)2 plays a key role in promoting the one-step two-electron process: (MV+·)2 + NO3 + 2H+ → 2MV2+ + NO2 + H2O. Experimental and DFT results also reveal that a unique double CPET (concerted proton–electron transfer) pathway is taken to evolve H2 by the Co-NHC catalysts with substantially minimized reorganization energies: Co(II)-NHC CPET Co(III)(H)-NHC CPET Co(II)-NHC + H2. This pathway can be viewed as related to the so-called Volmer-Heyrovsky mechanism adopted by some metals and is quite unique to the Co-NHC catalysts.

Abstract Image

由Co-NHC催化剂催化的viologen -Radical驱动的水中析氢:硝酸盐自由基清除和Volmer-Heyrovsky-like CPET途径
详细研究了含两个n -杂环羰基和两个吡啶基给体(Co-NHC1和Co-NHC2,其中Co-NHC2在每个吡啶基配体上都有甲氧基取代基)的两种大环钴化合物光化学析氢反应(HER)的催化活性控制因素。本研究采用由EDTA、[Ru(bpy)3]2+ (bpy = 2,2′-联吡啶)和MV2+ (MV2+ = methylviologen)在pH = 5下组成的水相光体系。结果表明,两种催化剂促进HER的效率相似(6 h内TON = 12-13),表明给电子的甲氧基取代基对HER的贡献较小。在光催化过程中,催化剂的降解过程不断进行,最终生成[Co(edta)]−(edta = H4edta)为终端物质。动态光散射(DLS)结果表明,未发现异质种。我们还发现,作为反阴离子参与光催化组分的硝酸盐显著抑制了光催化HER,导致TON从12.7大幅降低到7.2。Griess试验证实NO3 -作为一种清除剂,使还原型MV2+(即MV+·)失活。详细的光谱研究表明,自由基二聚体(MV+·)2在促进(MV+·)2 + NO3 - + 2H+→2MV2+ + NO2 - + H2O的一步双电子过程中起关键作用。实验和DFT结果还表明,Co-NHC催化剂通过独特的双CPET(协同质子-电子转移)途径进化出H2,重组能显著降低:Co(II)-NHC−→−CPET→CPET→CPET→CPET Co(III)(H)-NHC−→−CPET→CPET→CPET Co(II)-NHC + H2。这一途径与某些金属所采用的所谓Volmer-Heyrovsky机制有关,并且是Co-NHC催化剂所特有的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信