Intelligent segmentation of wildfire region and interpretation of fire front in visible light images from the viewpoint of an unmanned aerial vehicle (UAV)
Jianwei Li , Jiali Wan , Long Sun , Tongxin Hu , Xingdong Li , Huiru Zheng
{"title":"Intelligent segmentation of wildfire region and interpretation of fire front in visible light images from the viewpoint of an unmanned aerial vehicle (UAV)","authors":"Jianwei Li , Jiali Wan , Long Sun , Tongxin Hu , Xingdong Li , Huiru Zheng","doi":"10.1016/j.isprsjprs.2024.12.025","DOIUrl":null,"url":null,"abstract":"<div><div>The acceleration of global warming and intensifying global climate anomalies have led to a rise in the frequency of wildfires. However, most existing research on wildfire fields focuses primarily on wildfire identification and prediction, with limited attention given to the intelligent interpretation of detailed information, such as fire front within fire region. To address this gap, advance the analysis of fire front in UAV-captured visible images, and facilitate future calculations of fire behavior parameters, a new method is proposed for the intelligent segmentation and fire front interpretation of wildfire regions. This proposed method comprises three key steps: deep learning-based fire segmentation, boundary tracking of wildfire regions, and fire front interpretation. Specifically, the YOLOv7-tiny model is enhanced with a Convolutional Block Attention Module (CBAM), which integrates channel and spatial attention mechanisms to improve the model’s focus on wildfire regions and boost the segmentation precision. Experimental results show that the proposed method improved detection and segmentation precision by 3.8 % and 3.6 %, respectively, compared to existing approaches, and achieved an average segmentation frame rate of 64.72 Hz, which is well above the 30 Hz threshold required for real-time fire segmentation. Furthermore, the method’s effectiveness in boundary tracking and fire front interpreting was validated using an outdoor grassland fire fusion experiment’s real fire image data. Additional tests were conducted in southern New South Wales, Australia, using data that confirmed the robustness of the method in accurately interpreting the fire front. The findings of this research have potential applications in dynamic data-driven forest fire spread modeling and fire digital twinning areas. The code and dataset are publicly available at <span><span>https://github.com/makemoneyokk/fire-segmentation-interpretation.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"220 ","pages":"Pages 473-489"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004957","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The acceleration of global warming and intensifying global climate anomalies have led to a rise in the frequency of wildfires. However, most existing research on wildfire fields focuses primarily on wildfire identification and prediction, with limited attention given to the intelligent interpretation of detailed information, such as fire front within fire region. To address this gap, advance the analysis of fire front in UAV-captured visible images, and facilitate future calculations of fire behavior parameters, a new method is proposed for the intelligent segmentation and fire front interpretation of wildfire regions. This proposed method comprises three key steps: deep learning-based fire segmentation, boundary tracking of wildfire regions, and fire front interpretation. Specifically, the YOLOv7-tiny model is enhanced with a Convolutional Block Attention Module (CBAM), which integrates channel and spatial attention mechanisms to improve the model’s focus on wildfire regions and boost the segmentation precision. Experimental results show that the proposed method improved detection and segmentation precision by 3.8 % and 3.6 %, respectively, compared to existing approaches, and achieved an average segmentation frame rate of 64.72 Hz, which is well above the 30 Hz threshold required for real-time fire segmentation. Furthermore, the method’s effectiveness in boundary tracking and fire front interpreting was validated using an outdoor grassland fire fusion experiment’s real fire image data. Additional tests were conducted in southern New South Wales, Australia, using data that confirmed the robustness of the method in accurately interpreting the fire front. The findings of this research have potential applications in dynamic data-driven forest fire spread modeling and fire digital twinning areas. The code and dataset are publicly available at https://github.com/makemoneyokk/fire-segmentation-interpretation.git.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.