Scalable control of stem cell fate by riboswitch-regulated RNA viral vector without genomic integration.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Molecular Therapy Pub Date : 2025-03-05 Epub Date: 2025-01-10 DOI:10.1016/j.ymthe.2025.01.005
Narae Kim, Yohei Yokobayashi
{"title":"Scalable control of stem cell fate by riboswitch-regulated RNA viral vector without genomic integration.","authors":"Narae Kim, Yohei Yokobayashi","doi":"10.1016/j.ymthe.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs). The vector is equipped with a small molecule-regulated riboswitch and a drug selection marker that allow temporal regulation of transgene expression and stable maintenance of the vector in proliferating stem cells. We demonstrated the utility of the vector by maintaining the pluripotency of mESCs in a differentiation induction medium by expressing Nanog and inducing myogenic differentiation by triggering Myod1 expression, without altering the mESC genome.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"1213-1225"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs). The vector is equipped with a small molecule-regulated riboswitch and a drug selection marker that allow temporal regulation of transgene expression and stable maintenance of the vector in proliferating stem cells. We demonstrated the utility of the vector by maintaining the pluripotency of mESCs in a differentiation induction medium by expressing Nanog and inducing myogenic differentiation by triggering Myod1 expression, without altering the mESC genome.

无基因组整合的核糖体开关调节RNA病毒载体对干细胞命运的可扩展控制。
干细胞中的转基因表达是调节细胞特性和向各种细胞类型分化的有力手段。然而,现有的干细胞中转基因表达载体存在一些局限性,如需要基因组整合、基因表达的短暂性以及无法暂时调节转基因表达,这些都阻碍了生物医学和临床应用。在这里,我们报道了一类新的基于RNA病毒的载体,用于在小鼠胚胎干细胞(mESCs)中可扩展和无整合的转基因表达。该载体配备了一个小分子调控的核糖开关和一个药物选择标记,可以暂时调节转基因表达,并在增殖干细胞中稳定维持载体。我们在不改变mESC基因组的情况下,通过表达Nanog和触发Myod1表达,在分化诱导培养基中维持mESC的多能性,从而证明了该载体的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信