A β-Thalassemia Cell Biobank: Updates, Further Validation in Genetic and Therapeutic Research and Opportunities During (and After) the COVID-19 Pandemic.
{"title":"A β-Thalassemia Cell Biobank: Updates, Further Validation in Genetic and Therapeutic Research and Opportunities During (and After) the COVID-19 Pandemic.","authors":"Roberto Gambari, Maria Rita Gamberini, Lucia Carmela Cosenza, Cristina Zuccato, Alessia Finotti","doi":"10.3390/jcm14010289","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a \"unique tool\" during and after the COVID-19 pandemic. <b>Methods</b>: The methods were as follows: freezing, cryopreservation, long-term storage, and thawing of erythroid precursor cells from β-thalassemia patients; fetal hemoglobin (HbF) induction; CRISPR-Cas9 gene editing; HPLC analysis of the hemoglobin pattern. <b>Results</b>: The updated version of the Thal-Biobank is a cellular repository constituted of 990 cryovials from 221 β-thalassemia patients; the phenotype (pattern of hemoglobin production) is maintained after long-term storage; fetal hemoglobin induction and CRISPR-Cas9 gene editing can be performed using biobanked cells. In representative experiments using an isoxazole derivative as HbF inducer, the HbF increased from 13.36% to more than 60%. Furthermore, in CRIPR/Cas9 gene editing, de novo production of HbA was obtained (42.7% with respect to the trace amounts found in untreated cells). <b>Conclusions</b>: The implemented Thal-Biobank was developed before the COVID-19 outbreak and should be considered a tool of great interest for researchers working on β-thalassemia, with the aim of developing innovative therapeutic protocols and verifying the impact of the COVID-19 pandemic on erythroid precursor cells.</p>","PeriodicalId":15533,"journal":{"name":"Journal of Clinical Medicine","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcm14010289","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic. Methods: The methods were as follows: freezing, cryopreservation, long-term storage, and thawing of erythroid precursor cells from β-thalassemia patients; fetal hemoglobin (HbF) induction; CRISPR-Cas9 gene editing; HPLC analysis of the hemoglobin pattern. Results: The updated version of the Thal-Biobank is a cellular repository constituted of 990 cryovials from 221 β-thalassemia patients; the phenotype (pattern of hemoglobin production) is maintained after long-term storage; fetal hemoglobin induction and CRISPR-Cas9 gene editing can be performed using biobanked cells. In representative experiments using an isoxazole derivative as HbF inducer, the HbF increased from 13.36% to more than 60%. Furthermore, in CRIPR/Cas9 gene editing, de novo production of HbA was obtained (42.7% with respect to the trace amounts found in untreated cells). Conclusions: The implemented Thal-Biobank was developed before the COVID-19 outbreak and should be considered a tool of great interest for researchers working on β-thalassemia, with the aim of developing innovative therapeutic protocols and verifying the impact of the COVID-19 pandemic on erythroid precursor cells.
期刊介绍:
Journal of Clinical Medicine (ISSN 2077-0383), is an international scientific open access journal, providing a platform for advances in health care/clinical practices, the study of direct observation of patients and general medical research. This multi-disciplinary journal is aimed at a wide audience of medical researchers and healthcare professionals.
Unique features of this journal:
manuscripts regarding original research and ideas will be particularly welcomed.JCM also accepts reviews, communications, and short notes.
There is no limit to publication length: our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.