A remark on the Brill–Noether theory of curves of fixed gonality

IF 0.5 4区 数学 Q3 MATHEMATICS
Gerriet Martens
{"title":"A remark on the Brill–Noether theory of curves of fixed gonality","authors":"Gerriet Martens","doi":"10.1007/s00013-024-02059-w","DOIUrl":null,"url":null,"abstract":"<div><p>Recently the Brill–Noether theory of curves <i>C</i> of both fixed genus and gonality was established. In particular, in this theory (now called the Hurwitz–Brill–Noether theory), all irreducible components of the variety of complete linear series of a fixed degree and dimension on <i>C</i> are obtained from the closures of certain so-called “Brill–Noether splitting loci” (loci which have a rather succinct description). In this paper, a method previously invented for the construction of some of these irreducible components is applied to get simply designed varieties inside the difference between these splitting loci and their closures, i.e., inside the boundary of the splitting loci.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 1","pages":"49 - 61"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02059-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02059-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently the Brill–Noether theory of curves C of both fixed genus and gonality was established. In particular, in this theory (now called the Hurwitz–Brill–Noether theory), all irreducible components of the variety of complete linear series of a fixed degree and dimension on C are obtained from the closures of certain so-called “Brill–Noether splitting loci” (loci which have a rather succinct description). In this paper, a method previously invented for the construction of some of these irreducible components is applied to get simply designed varieties inside the difference between these splitting loci and their closures, i.e., inside the boundary of the splitting loci.

关于固定向性曲线的Brill-Noether理论的评述
最近建立了固定格和正交曲线C的Brill-Noether理论。特别是,在这个理论(现在称为Hurwitz-Brill-Noether理论)中,C上的固定度和维数的完全线性级数的所有不可约分量都是从某些所谓的“Brill-Noether分裂位点”的闭包中获得的(这些位点有一个相当简洁的描述)。本文采用先前发明的一种构造这些不可约成分的方法,在这些分裂位点与其闭包之间的差内,即在分裂位点的边界内,得到简单设计的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信