On the transitivity of Lie ideals and a characterization of perfect Lie algebras

IF 0.5 4区 数学 Q3 MATHEMATICS
Nikolaos Panagiotis Souris
{"title":"On the transitivity of Lie ideals and a characterization of perfect Lie algebras","authors":"Nikolaos Panagiotis Souris","doi":"10.1007/s00013-024-02063-0","DOIUrl":null,"url":null,"abstract":"<div><p>We explore general intrinsic and extrinsic conditions that allow the transitivity of the relation of being an ideal in Lie algebras. We also prove that perfect Lie algebras of arbitrary dimension and over any field are intrinsically characterized by transitivity of this type. In particular, we show that a Lie algebra <span>\\(\\mathfrak {h}\\)</span> is perfect (i.e., <span>\\(\\mathfrak {h}=[\\mathfrak {h}, \\mathfrak {h}]\\)</span>) if and only if for all Lie algebras <span>\\(\\mathfrak {k}, \\mathfrak {g}\\)</span> such that <span>\\(\\mathfrak {h}\\)</span> is an ideal of <span>\\(\\mathfrak {k}\\)</span> and <span>\\(\\mathfrak {k}\\)</span> is an ideal of <span>\\(\\mathfrak {g}\\)</span>, it follows that <span>\\(\\mathfrak {h}\\)</span> is an ideal of <span>\\(\\mathfrak {g}\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 1","pages":"9 - 18"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02063-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore general intrinsic and extrinsic conditions that allow the transitivity of the relation of being an ideal in Lie algebras. We also prove that perfect Lie algebras of arbitrary dimension and over any field are intrinsically characterized by transitivity of this type. In particular, we show that a Lie algebra \(\mathfrak {h}\) is perfect (i.e., \(\mathfrak {h}=[\mathfrak {h}, \mathfrak {h}]\)) if and only if for all Lie algebras \(\mathfrak {k}, \mathfrak {g}\) such that \(\mathfrak {h}\) is an ideal of \(\mathfrak {k}\) and \(\mathfrak {k}\) is an ideal of \(\mathfrak {g}\), it follows that \(\mathfrak {h}\) is an ideal of \(\mathfrak {g}\).

李理想的及及性及完备李代数的一个刻划
我们探讨了李代数中存在理想关系的传递性的一般内在条件和外在条件。我们还证明了任意维、任意域上的完备李代数具有这种传递性的本质特征。特别地,我们证明了一个李代数\(\mathfrak {h}\)是完美的(即,\(\mathfrak {h}=[\mathfrak {h}, \mathfrak {h}]\))当且仅当对于所有李代数\(\mathfrak {k}, \mathfrak {g}\),使得\(\mathfrak {h}\)是\(\mathfrak {k}\)的理想,\(\mathfrak {k}\)是\(\mathfrak {g}\)的理想,从而得出\(\mathfrak {h}\)是\(\mathfrak {g}\)的理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信