Periodicity and positivity of solutions for first-order nonlinear neutral differential equations with iterative terms and impulsive effects

IF 0.9 Q2 MATHEMATICS
Mimia Benhadri, Tomás Caraballo
{"title":"Periodicity and positivity of solutions for first-order nonlinear neutral differential equations with iterative terms and impulsive effects","authors":"Mimia Benhadri,&nbsp;Tomás Caraballo","doi":"10.1007/s13370-025-01237-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, sufficient conditions for the existence of bounded positive periodic solutions are established for a class of nonlinear neutral differential equations with iterative source term and nonlinear impulses. The form including an impulsive term of the equations in this paper is rather general and incorporates as special cases various problems which have been studied extensively in the literature. Transforming the considered equation to an equivalent integral equation, we prove the existence of positive periodic solutions using a Krasnoselskii fixed point theorem for the sum of a contraction and a compact mapping. Finally, we present an example to illustrate the effectiveness of our results.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01237-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, sufficient conditions for the existence of bounded positive periodic solutions are established for a class of nonlinear neutral differential equations with iterative source term and nonlinear impulses. The form including an impulsive term of the equations in this paper is rather general and incorporates as special cases various problems which have been studied extensively in the literature. Transforming the considered equation to an equivalent integral equation, we prove the existence of positive periodic solutions using a Krasnoselskii fixed point theorem for the sum of a contraction and a compact mapping. Finally, we present an example to illustrate the effectiveness of our results.

具有迭代项和脉冲效应的一阶非线性中立型微分方程解的周期性和正性
本文建立了一类具有迭代源项和非线性脉冲的非线性中立型微分方程存在有界正周期解的充分条件。本文的方程包含脉冲项的形式比较一般,并将文献中广泛研究的各种问题作为特例纳入其中。将所考虑的方程转化为一个等价的积分方程,利用Krasnoselskii不动点定理证明了缩紧映射和的周期正解的存在性。最后,我们给出了一个例子来说明我们的结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信