Leavitt path algebras of quantum quivers

IF 0.5 4区 数学 Q3 MATHEMATICS
Joshua Graham, Rishabh Goswami, Jason Palin
{"title":"Leavitt path algebras of quantum quivers","authors":"Joshua Graham,&nbsp;Rishabh Goswami,&nbsp;Jason Palin","doi":"10.1007/s00013-024-02067-w","DOIUrl":null,"url":null,"abstract":"<div><p>Adapting a recent work of Brannan et al. on extending graph <span>\\(C^*\\)</span>-algebras to quantum graphs, we introduce “Quantum Quivers” as an analogue of quivers where the edge and vertex set has been replaced by a <span>\\(C^*\\)</span>-algebra and the maps between the sets by <span>\\(*\\)</span>-homomorphisms. Additionally, we develop the theory around these structures and construct a notion of Leavitt path algebra over them and also compute the monoid of finitely generated projective modules over this class of algebras.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 1","pages":"29 - 48"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02067-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Adapting a recent work of Brannan et al. on extending graph \(C^*\)-algebras to quantum graphs, we introduce “Quantum Quivers” as an analogue of quivers where the edge and vertex set has been replaced by a \(C^*\)-algebra and the maps between the sets by \(*\)-homomorphisms. Additionally, we develop the theory around these structures and construct a notion of Leavitt path algebra over them and also compute the monoid of finitely generated projective modules over this class of algebras.

量子颤振的莱维特路径代数
根据Brannan等人最近关于将图\(C^*\) -代数扩展到量子图的工作,我们引入了“量子箭窝”作为箭窝的模拟,其中边和顶点集被\(C^*\) -代数取代,集合之间的映射被\(*\) -同态取代。此外,我们围绕这些结构发展了理论,构造了它们上面的Leavitt路径代数的概念,并计算了这类代数上有限生成的射影模的单阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信