Random walks on scale-free flowers with stochastic resetting.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0242793
Anlin Li, Xiaohan Sun, Shaoxiang Zhu, Feng Zhu
{"title":"Random walks on scale-free flowers with stochastic resetting.","authors":"Anlin Li, Xiaohan Sun, Shaoxiang Zhu, Feng Zhu","doi":"10.1063/5.0242793","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case. We demonstrate that stochastic resetting significantly improves search efficiency, especially in larger networks. These findings underscore the effectiveness of stochastic resetting as a strategy for optimizing search algorithms in complex networks, offering valuable applications in domains such as biological transport, data networks, and search processes where rapid and efficient exploration is vital.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0242793","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case. We demonstrate that stochastic resetting significantly improves search efficiency, especially in larger networks. These findings underscore the effectiveness of stochastic resetting as a strategy for optimizing search algorithms in complex networks, offering valuable applications in domains such as biological transport, data networks, and search processes where rapid and efficient exploration is vital.

具有随机重置的无标度花上的随机漫步。
本研究探讨了随机重置对无标度(u,v)花内随机游走动力学的影响。利用生成函数技术,建立了首次通过时间生成函数的递归关系,并在有复位和无复位的平均首次通过时间之间建立了联系。我们的研究跨越了多个场景,随机行走器从不同的位置出发,目标是到达不同的目标节点,这使我们能够确定最佳的重置概率,使每种情况下的平均首次通过时间最小化。我们证明了随机重置显著提高了搜索效率,特别是在较大的网络中。这些发现强调了随机重置作为复杂网络中优化搜索算法的策略的有效性,在生物传输、数据网络和搜索过程等领域提供了有价值的应用,其中快速有效的探索至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信