Towards Trustworthy AI-Empowered Real-Time Bidding for Online Advertisement Auctioning

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Xiaoli Tang, Han Yu
{"title":"Towards Trustworthy AI-Empowered Real-Time Bidding for Online Advertisement Auctioning","authors":"Xiaoli Tang, Han Yu","doi":"10.1145/3701741","DOIUrl":null,"url":null,"abstract":"Artificial intelligence-empowred Real-Time Bidding (AIRTB) is regarded as one of the most enabling technologies for online advertising. It has attracted significant research attention from diverse fields such as pattern recognition, game theory and mechanism design. Despite of its remarkable development and deployment, the AIRTB system can sometimes harm the interest of its participants (e.g., depleting the advertisers’ budget with various kinds of fraud). As such, building trustworthy AIRTB auctioning systems has emerged as an important direction of research in this field in recent years. Due to the highly interdisciplinary nature of this field and a lack of a comprehensive survey, it is a challenge for researchers to enter this field and contribute towards building trustworthy AIRTB technologies. This paper bridges this important gap in trustworthy AIRTB literature. We start by analysing the key concerns of various AIRTB stakeholders and identify five main dimensions of trust building in AIRTB, namely robustness, explainability, fairness, auditability & accountability, and environmental well-being. For each of these dimensions, we propose a unique taxonomy of the state of the art, trace the root causes of possible breakdown of trust, and discuss the necessity of the given dimension. This is followed by a comprehensive review of existing strategies for fulfilling the requirements of each trust dimension. In addition, we discuss the promising future directions of research essential towards building trustworthy AIRTB systems to benefit the field of online advertising.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"82 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3701741","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence-empowred Real-Time Bidding (AIRTB) is regarded as one of the most enabling technologies for online advertising. It has attracted significant research attention from diverse fields such as pattern recognition, game theory and mechanism design. Despite of its remarkable development and deployment, the AIRTB system can sometimes harm the interest of its participants (e.g., depleting the advertisers’ budget with various kinds of fraud). As such, building trustworthy AIRTB auctioning systems has emerged as an important direction of research in this field in recent years. Due to the highly interdisciplinary nature of this field and a lack of a comprehensive survey, it is a challenge for researchers to enter this field and contribute towards building trustworthy AIRTB technologies. This paper bridges this important gap in trustworthy AIRTB literature. We start by analysing the key concerns of various AIRTB stakeholders and identify five main dimensions of trust building in AIRTB, namely robustness, explainability, fairness, auditability & accountability, and environmental well-being. For each of these dimensions, we propose a unique taxonomy of the state of the art, trace the root causes of possible breakdown of trust, and discuss the necessity of the given dimension. This is followed by a comprehensive review of existing strategies for fulfilling the requirements of each trust dimension. In addition, we discuss the promising future directions of research essential towards building trustworthy AIRTB systems to benefit the field of online advertising.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信