Neural-network-supported basis optimizer for the configuration interaction problem in quantum many-body clusters: Feasibility study and numerical proof

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Pavlo Bilous, Louis Thirion, Henri Menke, Maurits W. Haverkort, Adriana Pálffy, Philipp Hansmann
{"title":"Neural-network-supported basis optimizer for the configuration interaction problem in quantum many-body clusters: Feasibility study and numerical proof","authors":"Pavlo Bilous, Louis Thirion, Henri Menke, Maurits W. Haverkort, Adriana Pálffy, Philipp Hansmann","doi":"10.1103/physrevb.111.035124","DOIUrl":null,"url":null,"abstract":"A neural-network approach to optimize the selection of Slater determinants in configuration interaction calculations for condensed-matter quantum many-body systems is developed. We exemplify our algorithm on the discrete version of the single-impurity Anderson model with up to 299 bath sites. Employing a neural network classifier and active learning, our algorithm enhances computational efficiency by iteratively identifying the most relevant Slater determinants for the ground state wave function. We benchmark our results against established methods and investigate the efficiency of our approach compared to another basis truncation scheme without a neural network. Our algorithm demonstrates a substantial improvement in the efficiency of determinant selection, yielding a more compact and computationally manageable basis without compromising accuracy. Given the straightforward application of our neural-network-supported selection scheme to other model Hamiltonians of quantum many-body clusters, our algorithm can significantly advance selective configuration interaction calculations in the context of correlated condensed matter. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"95 3 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.035124","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

A neural-network approach to optimize the selection of Slater determinants in configuration interaction calculations for condensed-matter quantum many-body systems is developed. We exemplify our algorithm on the discrete version of the single-impurity Anderson model with up to 299 bath sites. Employing a neural network classifier and active learning, our algorithm enhances computational efficiency by iteratively identifying the most relevant Slater determinants for the ground state wave function. We benchmark our results against established methods and investigate the efficiency of our approach compared to another basis truncation scheme without a neural network. Our algorithm demonstrates a substantial improvement in the efficiency of determinant selection, yielding a more compact and computationally manageable basis without compromising accuracy. Given the straightforward application of our neural-network-supported selection scheme to other model Hamiltonians of quantum many-body clusters, our algorithm can significantly advance selective configuration interaction calculations in the context of correlated condensed matter. Published by the American Physical Society 2025
量子多体簇构型相互作用问题的神经网络支持基优化器:可行性研究与数值证明
提出了一种优化凝聚态量子多体系统构型相互作用计算中Slater行列式选择的神经网络方法。我们在具有多达299个浴位的单杂质安德森模型的离散版本上举例说明了我们的算法。采用神经网络分类器和主动学习,我们的算法通过迭代识别基态波函数最相关的Slater决定因素来提高计算效率。我们将我们的结果与已建立的方法进行基准测试,并与另一种没有神经网络的基截断方案相比,研究了我们的方法的效率。我们的算法证明了行列式选择效率的实质性改进,在不影响准确性的情况下产生更紧凑和计算可管理的基础。考虑到我们的神经网络支持的选择方案直接应用于量子多体簇的其他模型哈密顿量,我们的算法可以显着推进相关凝聚态背景下的选择构型相互作用计算。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信