{"title":"Solving Quadratic Systems With Full-Rank Matrices Using Sparse or Generative Priors","authors":"Junren Chen;Michael K. Ng;Zhaoqiang Liu","doi":"10.1109/TSP.2024.3522179","DOIUrl":null,"url":null,"abstract":"The problem of recovering a signal <inline-formula><tex-math>$\\boldsymbol{x}\\in\\mathbb{R}^{n}$</tex-math></inline-formula> from a quadratic system <inline-formula><tex-math>$\\{y_{i}=\\boldsymbol{x}^{\\top}\\boldsymbol{A}_{i}\\boldsymbol{x},\\ i=1,\\ldots,m\\}$</tex-math></inline-formula> with full-rank matrices <inline-formula><tex-math>$\\boldsymbol{A}_{i}$</tex-math></inline-formula> frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging. With i.i.d. standard Gaussian matrices <inline-formula><tex-math>$\\boldsymbol{A}_{i}$</tex-math></inline-formula>, this paper addresses the high-dimensional case where <inline-formula><tex-math>$m\\ll n$</tex-math></inline-formula> by incorporating prior knowledge of <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula>. First, we consider a <inline-formula><tex-math>$k$</tex-math></inline-formula>-sparse <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> and introduce the thresholded Wirtinger flow (TWF) algorithm that does not require the sparsity level <inline-formula><tex-math>$k$</tex-math></inline-formula>. TWF comprises two steps: the spectral initialization that identifies a point sufficiently close to <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> (up to a sign flip) when <inline-formula><tex-math>$m=O(k^{2}\\log n)$</tex-math></inline-formula>, and the thresholded gradient descent which, when provided a good initialization, produces a sequence linearly converging to <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> with <inline-formula><tex-math>$m=O(k\\log n)$</tex-math></inline-formula> measurements. Second, we explore the generative prior, assuming that <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> lies in the range of an <inline-formula><tex-math>$L$</tex-math></inline-formula>-Lipschitz continuous generative model with <inline-formula><tex-math>$k$</tex-math></inline-formula>-dimensional inputs in an <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-ball of radius <inline-formula><tex-math>$r$</tex-math></inline-formula>. With an estimate correlated with the signal, we develop the projected gradient descent (PGD) algorithm that also comprises two steps: the projected power method that provides an initial vector with <inline-formula><tex-math>$O\\big{(}\\sqrt{k\\log(L)/m}\\big{)}$</tex-math></inline-formula> <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-error given <inline-formula><tex-math>$m=O(k\\log(Lnr))$</tex-math></inline-formula> measurements, and the projected gradient descent that refines the <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-error to <inline-formula><tex-math>$O(\\delta)$</tex-math></inline-formula> at a geometric rate when <inline-formula><tex-math>$m=O(k\\log\\frac{Lrn}{\\delta^{2}})$</tex-math></inline-formula>. Experimental results corroborate our theoretical findings and show that: (i) our approach for the sparse case notably outperforms the existing provable algorithm sparse power factorization; (ii) leveraging the generative prior allows for precise image recovery in the MNIST dataset from a small number of quadratic measurements.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"477-492"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10836928/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of recovering a signal $\boldsymbol{x}\in\mathbb{R}^{n}$ from a quadratic system $\{y_{i}=\boldsymbol{x}^{\top}\boldsymbol{A}_{i}\boldsymbol{x},\ i=1,\ldots,m\}$ with full-rank matrices $\boldsymbol{A}_{i}$ frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging. With i.i.d. standard Gaussian matrices $\boldsymbol{A}_{i}$, this paper addresses the high-dimensional case where $m\ll n$ by incorporating prior knowledge of $\boldsymbol{x}$. First, we consider a $k$-sparse $\boldsymbol{x}$ and introduce the thresholded Wirtinger flow (TWF) algorithm that does not require the sparsity level $k$. TWF comprises two steps: the spectral initialization that identifies a point sufficiently close to $\boldsymbol{x}$ (up to a sign flip) when $m=O(k^{2}\log n)$, and the thresholded gradient descent which, when provided a good initialization, produces a sequence linearly converging to $\boldsymbol{x}$ with $m=O(k\log n)$ measurements. Second, we explore the generative prior, assuming that $\boldsymbol{x}$ lies in the range of an $L$-Lipschitz continuous generative model with $k$-dimensional inputs in an $\ell_{2}$-ball of radius $r$. With an estimate correlated with the signal, we develop the projected gradient descent (PGD) algorithm that also comprises two steps: the projected power method that provides an initial vector with $O\big{(}\sqrt{k\log(L)/m}\big{)}$$\ell_{2}$-error given $m=O(k\log(Lnr))$ measurements, and the projected gradient descent that refines the $\ell_{2}$-error to $O(\delta)$ at a geometric rate when $m=O(k\log\frac{Lrn}{\delta^{2}})$. Experimental results corroborate our theoretical findings and show that: (i) our approach for the sparse case notably outperforms the existing provable algorithm sparse power factorization; (ii) leveraging the generative prior allows for precise image recovery in the MNIST dataset from a small number of quadratic measurements.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.