Solving Quadratic Systems With Full-Rank Matrices Using Sparse or Generative Priors

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Junren Chen;Michael K. Ng;Zhaoqiang Liu
{"title":"Solving Quadratic Systems With Full-Rank Matrices Using Sparse or Generative Priors","authors":"Junren Chen;Michael K. Ng;Zhaoqiang Liu","doi":"10.1109/TSP.2024.3522179","DOIUrl":null,"url":null,"abstract":"The problem of recovering a signal <inline-formula><tex-math>$\\boldsymbol{x}\\in\\mathbb{R}^{n}$</tex-math></inline-formula> from a quadratic system <inline-formula><tex-math>$\\{y_{i}=\\boldsymbol{x}^{\\top}\\boldsymbol{A}_{i}\\boldsymbol{x},\\ i=1,\\ldots,m\\}$</tex-math></inline-formula> with full-rank matrices <inline-formula><tex-math>$\\boldsymbol{A}_{i}$</tex-math></inline-formula> frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging. With i.i.d. standard Gaussian matrices <inline-formula><tex-math>$\\boldsymbol{A}_{i}$</tex-math></inline-formula>, this paper addresses the high-dimensional case where <inline-formula><tex-math>$m\\ll n$</tex-math></inline-formula> by incorporating prior knowledge of <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula>. First, we consider a <inline-formula><tex-math>$k$</tex-math></inline-formula>-sparse <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> and introduce the thresholded Wirtinger flow (TWF) algorithm that does not require the sparsity level <inline-formula><tex-math>$k$</tex-math></inline-formula>. TWF comprises two steps: the spectral initialization that identifies a point sufficiently close to <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> (up to a sign flip) when <inline-formula><tex-math>$m=O(k^{2}\\log n)$</tex-math></inline-formula>, and the thresholded gradient descent which, when provided a good initialization, produces a sequence linearly converging to <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> with <inline-formula><tex-math>$m=O(k\\log n)$</tex-math></inline-formula> measurements. Second, we explore the generative prior, assuming that <inline-formula><tex-math>$\\boldsymbol{x}$</tex-math></inline-formula> lies in the range of an <inline-formula><tex-math>$L$</tex-math></inline-formula>-Lipschitz continuous generative model with <inline-formula><tex-math>$k$</tex-math></inline-formula>-dimensional inputs in an <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-ball of radius <inline-formula><tex-math>$r$</tex-math></inline-formula>. With an estimate correlated with the signal, we develop the projected gradient descent (PGD) algorithm that also comprises two steps: the projected power method that provides an initial vector with <inline-formula><tex-math>$O\\big{(}\\sqrt{k\\log(L)/m}\\big{)}$</tex-math></inline-formula> <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-error given <inline-formula><tex-math>$m=O(k\\log(Lnr))$</tex-math></inline-formula> measurements, and the projected gradient descent that refines the <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-error to <inline-formula><tex-math>$O(\\delta)$</tex-math></inline-formula> at a geometric rate when <inline-formula><tex-math>$m=O(k\\log\\frac{Lrn}{\\delta^{2}})$</tex-math></inline-formula>. Experimental results corroborate our theoretical findings and show that: (i) our approach for the sparse case notably outperforms the existing provable algorithm sparse power factorization; (ii) leveraging the generative prior allows for precise image recovery in the MNIST dataset from a small number of quadratic measurements.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"477-492"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10836928/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of recovering a signal $\boldsymbol{x}\in\mathbb{R}^{n}$ from a quadratic system $\{y_{i}=\boldsymbol{x}^{\top}\boldsymbol{A}_{i}\boldsymbol{x},\ i=1,\ldots,m\}$ with full-rank matrices $\boldsymbol{A}_{i}$ frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging. With i.i.d. standard Gaussian matrices $\boldsymbol{A}_{i}$, this paper addresses the high-dimensional case where $m\ll n$ by incorporating prior knowledge of $\boldsymbol{x}$. First, we consider a $k$-sparse $\boldsymbol{x}$ and introduce the thresholded Wirtinger flow (TWF) algorithm that does not require the sparsity level $k$. TWF comprises two steps: the spectral initialization that identifies a point sufficiently close to $\boldsymbol{x}$ (up to a sign flip) when $m=O(k^{2}\log n)$, and the thresholded gradient descent which, when provided a good initialization, produces a sequence linearly converging to $\boldsymbol{x}$ with $m=O(k\log n)$ measurements. Second, we explore the generative prior, assuming that $\boldsymbol{x}$ lies in the range of an $L$-Lipschitz continuous generative model with $k$-dimensional inputs in an $\ell_{2}$-ball of radius $r$. With an estimate correlated with the signal, we develop the projected gradient descent (PGD) algorithm that also comprises two steps: the projected power method that provides an initial vector with $O\big{(}\sqrt{k\log(L)/m}\big{)}$ $\ell_{2}$-error given $m=O(k\log(Lnr))$ measurements, and the projected gradient descent that refines the $\ell_{2}$-error to $O(\delta)$ at a geometric rate when $m=O(k\log\frac{Lrn}{\delta^{2}})$. Experimental results corroborate our theoretical findings and show that: (i) our approach for the sparse case notably outperforms the existing provable algorithm sparse power factorization; (ii) leveraging the generative prior allows for precise image recovery in the MNIST dataset from a small number of quadratic measurements.
利用稀疏先验或生成先验求解具有全秩矩阵的二次系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信