Single-cell analysis of the epigenome and 3D chromatin architecture in the human retina.

Ying Yuan, Pooja Biswas, Nathan Zemke, Kelsey Dang, Yue Wu, Matteo D Antonio, Yang Xie, Qian Yang, Keyi Dong, Pik Ki Lau, Daofeng Li, Chad Seng, Weronika Bartosik, Justin Buchanan, Lin Lin, Ryan Lancione, Kangli Wang, Seoyeon Lee, Zane Gibbs, Joseph Ecker, Kelly Frazer, Ting Wang, Sebastian Preissl, Allen Wang, Radha Ayyagari, Bing Ren
{"title":"Single-cell analysis of the epigenome and 3D chromatin architecture in the human retina.","authors":"Ying Yuan, Pooja Biswas, Nathan Zemke, Kelsey Dang, Yue Wu, Matteo D Antonio, Yang Xie, Qian Yang, Keyi Dong, Pik Ki Lau, Daofeng Li, Chad Seng, Weronika Bartosik, Justin Buchanan, Lin Lin, Ryan Lancione, Kangli Wang, Seoyeon Lee, Zane Gibbs, Joseph Ecker, Kelly Frazer, Ting Wang, Sebastian Preissl, Allen Wang, Radha Ayyagari, Bing Ren","doi":"10.1101/2024.12.28.630634","DOIUrl":null,"url":null,"abstract":"<p><p>Most genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and etinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells. Comparative analysis of chromatin landscapes between human and mouse retina cells further revealed both evolutionarily conserved and divergent retinal gene-regulatory programs. Leveraging the rapid advancements in deep-learning techniques, we developed sequence-based predictors to interpret non-coding risk variants of retina diseases. Our study establishes retina-wide, single-cell transcriptome, epigenome, and 3D genome atlases, and provides a resource for studying the gene regulatory programs of the human retina and relevant diseases.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.28.630634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and etinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells. Comparative analysis of chromatin landscapes between human and mouse retina cells further revealed both evolutionarily conserved and divergent retinal gene-regulatory programs. Leveraging the rapid advancements in deep-learning techniques, we developed sequence-based predictors to interpret non-coding risk variants of retina diseases. Our study establishes retina-wide, single-cell transcriptome, epigenome, and 3D genome atlases, and provides a resource for studying the gene regulatory programs of the human retina and relevant diseases.

单细胞分析的表观基因组和三维染色质结构在人类视网膜。
大多数与眼部疾病相关的遗传风险变异是非蛋白质编码的,并且可能通过基因表达失调导致疾病,然而,由于对不同视网膜细胞类型的转录调控元件的不完整注释,阻碍了对其作用机制的更深入理解。为了解决这一知识空白,我们进行了单细胞多组学分析,研究了人类视网膜、黄斑和视网膜色素上皮(RPE)/脉络中的基因表达、染色质可及性、DNA甲基化组和三维染色质结构。我们确定了420,824个独特的候选调控元件,并在23个视网膜细胞亚类中表征了它们的染色质状态。人类和小鼠视网膜细胞染色质景观的比较分析进一步揭示了进化上保守的和不同的视网膜基因调控程序。利用深度学习技术的快速发展,我们开发了基于序列的预测因子来解释视网膜疾病的非编码风险变异。我们的研究建立了全视网膜、单细胞转录组、表观基因组和三维基因组图谱,为研究人类视网膜及相关疾病的基因调控程序提供了资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信