Darius P Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G Puelles, Christian F Krebs, Ulf Panzer, Stefan Bonn
{"title":"PCA-based spatial domain identification with state-of-the-art performance.","authors":"Darius P Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G Puelles, Christian F Krebs, Ulf Panzer, Stefan Bonn","doi":"10.1093/bioinformatics/btaf005","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data.</p><p><strong>Results: </strong>Following Occam's razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability.</p><p><strong>Availability and implementation: </strong>The code is available at https://github.com/imsb-uke/nichepca.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data.
Results: Following Occam's razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability.
Availability and implementation: The code is available at https://github.com/imsb-uke/nichepca.