Anti-neuroinflammatory and Neuroprotective Effects of T-006 on Alzheimer's Disease Models by Modulating TLR4-Mediated MyD88/ NF-κB Signaling.

Haiyun Chen, Xiao Chang, Jiemei Zhou, Guiliang Zhang, Jiehong Cheng, Zaijun Zhang, Jieyu Xing, Chunyan Yan, Zheng Liu
{"title":"Anti-neuroinflammatory and Neuroprotective Effects of T-006 on Alzheimer's Disease Models by Modulating TLR4-Mediated MyD88/ NF-κB Signaling.","authors":"Haiyun Chen, Xiao Chang, Jiemei Zhou, Guiliang Zhang, Jiehong Cheng, Zaijun Zhang, Jieyu Xing, Chunyan Yan, Zheng Liu","doi":"10.2174/0118715273337232241121113048","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice. Therefore, we have further investigated the effects of T-006 on neuroinflammation in AD-like pathology.</p><p><strong>Methods: </strong>The anti-inflammatory effects of T-006 and its underlying mechanisms were evaluated in Lipopolysaccharide (LPS)-induced AD rats. The potential protective effects against LPS-activated microglia-mediated neurotoxicity were also measured.</p><p><strong>Results: </strong>T-006 significantly improved the cognitive impairment in LPS-induced AD rats by inhibiting the microglia/astrocyte activation. Further cellular assays found that T-006 significantly reserved the anomalous elevation of inflammatory cytokines in LPS-induced BV2 microglial cells in a concentration-dependent manner, while T-006 treatment alone showed no effects on the normal cultured cells. T-006 also reduced the levels of Toll-like Receptor 4 (TLR4)/Myeloid Differentiation protein-88 (MyD88)/NF-κB signaling-related proteins in BV2 cells exposed to LPS stimulation. TAK242, which selectively inhibits TLR4, slightly lessened the effects of T-006 in LPS-treatment BV2 cells without significance. Importantly, T-006 protected neurons against LPS-induced neuroinflammation by inhibiting the Reactive Oxygen Species (ROS) production and maintaining mitochondrial function.</p><p><strong>Conclusion: </strong>T-006 inhibited TLR4-mediated MyD88/NF-κB signaling pathways to suppress neuroinflammation in the LPS-induced AD rat model.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273337232241121113048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice. Therefore, we have further investigated the effects of T-006 on neuroinflammation in AD-like pathology.

Methods: The anti-inflammatory effects of T-006 and its underlying mechanisms were evaluated in Lipopolysaccharide (LPS)-induced AD rats. The potential protective effects against LPS-activated microglia-mediated neurotoxicity were also measured.

Results: T-006 significantly improved the cognitive impairment in LPS-induced AD rats by inhibiting the microglia/astrocyte activation. Further cellular assays found that T-006 significantly reserved the anomalous elevation of inflammatory cytokines in LPS-induced BV2 microglial cells in a concentration-dependent manner, while T-006 treatment alone showed no effects on the normal cultured cells. T-006 also reduced the levels of Toll-like Receptor 4 (TLR4)/Myeloid Differentiation protein-88 (MyD88)/NF-κB signaling-related proteins in BV2 cells exposed to LPS stimulation. TAK242, which selectively inhibits TLR4, slightly lessened the effects of T-006 in LPS-treatment BV2 cells without significance. Importantly, T-006 protected neurons against LPS-induced neuroinflammation by inhibiting the Reactive Oxygen Species (ROS) production and maintaining mitochondrial function.

Conclusion: T-006 inhibited TLR4-mediated MyD88/NF-κB signaling pathways to suppress neuroinflammation in the LPS-induced AD rat model.

T-006通过调节tlr4介导的MyD88/ NF-κB信号通路对阿尔茨海默病模型的抗神经炎症和神经保护作用
由小胶质细胞激活引起的神经炎症被认为是阿尔茨海默病(AD)的重要致病因素。在AD转基因小鼠模型中,四甲基吡嗪衍生物T-006通过抑制tau蛋白表达和磷酸化来减轻认知缺陷。近年来,研究证实T-006能显著降低APP/PS1小鼠的总β淀粉样蛋白(Aβ)肽和胶质纤维酸性蛋白(GFAP)水平,并抑制离子钙结合受体分子-1 (Iba-1)的表达。因此,我们进一步研究了T-006对ad样病理神经炎症的影响。方法:观察T-006对脂多糖(LPS)诱导的AD大鼠的抗炎作用及其机制。还测量了对lps激活的小胶质细胞介导的神经毒性的潜在保护作用。结果:T-006通过抑制小胶质细胞/星形胶质细胞活化,显著改善脂多糖诱导的AD大鼠认知功能障碍。进一步的细胞实验发现,T-006以浓度依赖的方式显著保留了lps诱导的BV2小胶质细胞中炎症因子的异常升高,而单独使用T-006对正常培养的细胞没有影响。T-006还能降低LPS刺激下BV2细胞中toll样受体4 (TLR4)/髓样分化蛋白88 (MyD88)/NF-κB信号相关蛋白的水平。TAK242选择性抑制TLR4,在lps处理的BV2细胞中,T-006的作用略有减弱,但无显著性。重要的是,T-006通过抑制活性氧(ROS)的产生和维持线粒体功能来保护神经元免受lps诱导的神经炎症。结论:T-006抑制tlr4介导的MyD88/NF-κB信号通路,抑制lps诱导的AD大鼠神经炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信